• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

从量子到星空:混沌世界的隐藏秩序

1963年,洛伦兹用蝴蝶效应形象地展现出了混沌的魅力:亚马逊热带雨林中的一只蝴蝶偶尔扇动几下翅膀,可以在两周以后引起美国得克萨斯州的一场龙卷风。正所谓“失之毫厘,谬以千里”,混沌理论告诉我们,即使人类掌握了确定性规则,依旧无法拥有预测未来的能力。本文从混沌的天气预测实验开始,介绍了混沌理论和实例:从分岔到分形,从树木、血管这些自然界的实例,到量子混沌再到人类的意识。

  • 2022-12-15
  • 阅读402

陈皓勇教授:电力鸿蒙助力新型电力系统建设

发展中世界工程技术院院士、华南理工大学陈皓勇教授作了题为“电力鸿蒙助力新型电力系统建设”的报告。征得陈教授同意,特与您分享。

  • 2024-10-12
  • 阅读402

FlinkSQL的字段血缘解决方案

随着大数据的进一步发展,对数据血缘解析有着很大需求,数据血缘(data lineage)是数据治理(data governance)的重要组成部分,也是元数据管理、数据质量管理的有力工具。通俗地讲,数据血缘就是数据在产生、加工、流转到最终消费过程中形成的有层次的、可溯源的联系。成熟的数据血缘系统可以帮助开发者快速定位问题,以及追踪数据的更改,确定上下游的影响等等。

  • 2024-03-19
  • 阅读401

中服云工业物联网平台引入DeepSeek,全方位提升智能化能力

中服云工业物联网平台引入DeepSeek,全方位提升智能化能力

  • 2025-02-14
  • 阅读401

IEEETIM多尺度深度注意Q网络:一种用于齿轮箱不平衡故障诊断的深度强化学习新方法

确保机械驱动系统的安全在很大程度上依赖于准确的变速箱故障诊断。然而,实际多工况和不均匀样本分布的存在使变速箱的故障诊断更具挑战性。尽管使用卷积神经网络(CNNs)的智能故障诊断(IFD)已经显示出有希望的结果,但它们通常需要强大的反馈学习和经验丰富的超参数调整来完成不同的任务。在本文中,从深度强化学习(DRL)的角度提出了一种新的方法,称为多尺度深度注意力Q网络(MDAQN),用于不平衡齿轮箱故障诊断。引入了一种考虑类间偏差的不平衡分类马尔可夫决策过程(ICMDP),作为数据不平衡情况下增强分类策略学习的环境模拟。此外,设计了一种新的多尺度注意力卷积网络作为深度Q网络(DQN)算法的代理结构,从而提高了在复杂运行条件下的判别特征学习能力。通过利用DRL的弱反馈交互,对诊断模型进行训练,从而有效地进行不平衡齿轮箱故障诊断。在三个齿轮箱不平衡数据集上的实验结果表明,MDAQN表现出优越的特征提取能力和泛化能力,与多种现有方法相比,准确率超过99.0%。Index Terms—注意力,深度强化学习(DRL),变速箱,不平衡故障诊断,多尺度学习

  • 2024-12-23
  • 阅读401

合成氨企业安全风险隐患排查指南

不得使用以下淘汰落后工艺和设备:合成氨半水煤气氨水液相脱硫工艺、合成氨固定层间歇式煤气化装置(配套有吹风气余热回收、造气炉渣综合利用装置的煤气化装置除外)、合成氨一氧化碳常压变换及全中温变换(高温变换)工艺(中中低低变换工艺除外)、

  • 2024-09-23
  • 阅读401
  • 下载0
  • 7页
  • pdf

数字孪生辅助的直升机尾传动系统轴承与传动轴故障诊断

针对直升机尾传动系统故障数据不平衡问题,提出一种基于数字孪生和迁移学习的直升机尾传动系统 故障诊断方法。首先, 建立直升机尾传动系统刚柔耦合动力学仿真模型获取真实反映直升机尾传动系统工作状态的 高保真故障仿真数据。其次, 通过引入坐标可分离卷积和注意力机制的残差网络进行故障特征提取和分类。采用基 于高斯核函数的领域自适应方法缩小仿真数据和实验数据在特征空间的分布差异。为提高决策边界的鲁棒性,增强 类别之间的区分度, 引入边界正则化的交叉熵损失。经实验验证, 基于数字孪生和迁移学习的故障诊断方法, 可以 解决数据不平衡导致的深度学习故障诊断模型训练效果变差的问题, 使模型达到基于正常数据驱动的深度学习故障 诊断模型的性能水平。

  • 2024-05-17
  • 阅读401

IEEESENSORSJOURNAL基于深空时网络和典型变量分析的工业过程质量相关故障检测方法

现代制造过程通常包含多个子过程,过程变量的时空特征难以提取,这给传统的质量相关故障诊断带来了重大挑战。为了解决这个问题,我们提出了一种由图注意力网络驱动的故障检测模型——集成门控递归单元规范变量分析(GATRU-CVA)。首先,利用领域专家的知识和历史数据构建子块知识图。接下来,为全局变量构建了图注意力网络(GAT)的空间特征提取器。此外,使用子块知识图将全局空间特征划分为子块,并构建相应的时间特征提取器。然后,考虑到过程动态特性,使用CVA基于时空特征对过程进行建模,并计算相应的统计数据。阈值由核密度估计器(KDE)方法确定。最后,使用热轧带钢机过程(HSMP)的实际生产数据来验证所提出的模型。结果表明,该方法对HSMP的正确监测率(CMR)为97%与其他比较故障检测方法相比。关键词:规范变量分析、故障检测、门控递归单元(GRU)、图注意力网络(GAT)知识图。

  • 2025-01-11
  • 阅读400
上一页 1 …… 6768697071727374757677 …… 2191 下一页 共 17527 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读123
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读105
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读114
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读162
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读24
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读30
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读44
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读84
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南