今儿咱们聊聊关于时间序列的一个融合案例:基于ARIMA+LSTM+Prophet融合的多尺度时间序列预测。 在实际场景中,一个模型很难吃下所有频段的信号,涉及到趋势、季节性、短期突变、异动噪声、制度切换等等。 于是就有了多尺度融合的路线:把不同频段的信号拆开来,再用最擅长处理该频段的模型去拟合,最后把各模型的预测组合起来。
1) 事故原因分析 ① 汽轮机超负荷运行。 ② 安全阀起跳整定值。 ③ 蒸汽系统憋压。 ④ 蒸汽参数恶化。
? 1.什么是共振?如何避免机组发生共振? 答:共振是指物体固有的自振频率和外部胁迫激振频率相等时或成整倍倍数时,物体的振动幅度会突然增大的一种谐振现象,称为共振 避免转子共振,只需改变一下旋转体的工作转速,使其旋转频率与其固有频率偏离。避免机组与管道发生共振时,改变管道连接方法。在管道上合理设计支撑点,以改变管道振动频率。
PID是比例(Proportional)、积分(Integral)、微分(Differential)的缩写PID是一种闭环控制算法,它动态改变施加到被控对象的输出值(Out),使得被控对象某一物理量的实际值(Actual),能够快速、准确、稳定地跟踪到指定的目标值(Target)PID是一种基于误差(Error)调控的算法,其中规定:误差=目标值-实际值PID的任务是使误差始终为0PID对被控对象模型要求低,无需建模,即使被控对象内部运作规律不明确PID也能进行调控
P&ID(Piping and Instrumentation Diagram)是 EPCC 项目的核心工程文档,核心作用是详细展示工艺系统中管道、设备、仪表、阀门及控制回路的连接关系与操作逻辑,贯穿项目设计、采购、施工、调试全流程。
本研究提出了一种基于动态物理半经验模型的数字孪生框架,用于工业涡轮轴发动机的实时状态监控与故障诊断。该框架结合了物理模型的解释能力与数据驱动的适应性,通过时间窗口残差嵌入方法与动态自适应阈值技术,提升了故障特征的时间表征与诊断鲁棒性。研究以某两轴涡轮轴发动机为对象,建立了详细的组件级模型,并利用实验数据与性能图谱进行参数校准。通过构建包含多种故障类型的故障表,结合模式识别分类器与严重性感知融合机制,实现了对故障类型及其严重程度的准确识别与分类。仿真验证表明,该系统能够有效检测并诊断包括执行器、过程与传感器在内的多种故障,提供早期预警与故障演化时间线,为工业燃气轮机的智能维护提供了可行方案。
在现代工业体系中,旋转机械(如电机、泵、风机、齿轮箱、压缩机等)是生产流程的核心动力单元。一旦发生突发性故障,不仅会造成产线停摆、经济损失,还可能引发安全事故。因此,实现对设备故障的早期预警与精准诊断,始终是预测性维护(Predictive Maintenance, PdM)和设备健康管理(Prognostics and Health Management, PHM)领域的核心目标。
本文咱们要分享的是:ARIMA–Prophet–LightGBM的趋势分解与残差学习混合预测模型。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南