• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

生物质能碳捕集与封存在实现碳中和中的作用

BECCS是通过捕获生物质能利用过程中的CO2,并将CO2永久封存在地质构造中的一项负排放技术。生物质能结合碳捕集与封存(BECCS)技术包括生物质能利用和碳捕集与封存(CCS)两个阶段。

  • 2024-12-03
  • 阅读173
  • 下载0
  • 23页
  • pdf

【IEEETFS】微分卷积模糊时间序列预测

时间序列预测(FTSF)是一种应用广泛的典型预测方法。传统的FTSF被视为一个专家系统,这导致其无法识别未定义的特征。上述是FTSF预测不佳的主要原因。为了解决这个问题,提出的模型差分模糊卷积神经网络(DFCNN)利用卷积神经网络重新实现了具有可学习能力的FTSF。DFCNN能够识别潜在信息并提高预测精度。得益于神经网络的可学习能力,在FTSF中建立的模糊规则的长度被扩展到专家系统无法处理的任意长度。同时,由于非平稳时间序列的趋势,FTSF通常无法实现令人满意的非平稳时间系列性能。非平稳时间序列的趋势导致FTSF建立的模糊集无效,导致预测失败。DFCNN利用差分算法削弱非平稳时间系列,使DFCNN能够以较低的误差预测非平稳时间串,而FTSF无法以令人满意的性能进行预测。经过大量实验,DFCNN具有良好的预测效果,领先于现有的FTSE和常见的时间序列预测算法。最后,DFCNN为改进FTSF提供了进一步的思路,并具有持续的研究价值。 关键词:卷积神经网络、深度学习、预测、模糊时间序列。

  • 2024-12-12
  • 阅读212

信息技术发展司:以场景为切入点解决制造业数字化转型整体问题

近日,《数字化转型》2024年第1期刊发信息技术发展司文章《构建重点行业“一图四清单”推动制造业数字化转型走深向实》。 本文介绍了推进制造业数字化转型的主要挑战,总结了以场景为切入点解决制造业数字化转型的整体问题,并提出了“一图四清单”的主要思路和作用。建议各级主管部门、产学研用各界依托“一图四清单”理清数字化发展路径,完善政策指引,优化资源要素配置,科学开展诊断评估,以“一链一策”“一业一策”“一企一策”引导各界明确转型方向,实现“点-线-面”分类推进数字化转型。以“一图四清单”凝聚发展共识,健全体系建设,促进供需对接,为构建现代化产业体系夯实基础。

  • 2024-12-12
  • 阅读985

周游副教授:基于气泡产生起始温度的变压器短期过载预警方法

变压器过载运行容易导致油纸绝缘系统产生气泡进而造成故障,但目前只以140 ℃作为热点温度限值,未能考虑实际运行状态对气泡起始温度的影响,难以充分发挥设备的最大利用效益。针对上述问题,综合国内外油纸绝缘气泡产生起始温度的试验提出了适用于实际工况下的变压器气泡产生起始预警温度计算方法。根据变压器的运行年限、油中水分含量和海拔等运行参数估算出变压器内部油纸绝缘系统产生气泡的起始温度。以该温度的90%作为预警温度,表征变压器能够承受的最大荷载能力。利用贝叶斯网络建立了短期负荷预测模型,结合绕组热点温度计算方法实现了变压器热点温度的短期预测。提出了一种变压器短期过载预警方法,并证实了该方法能够充分考虑变压器的运行实况,对未来的过载情况提前发出告警,指导相关运维部门开展变压器的过载停运和负荷转移工作,减少变压器停运和绝缘故障的发生。

  • 2024-10-11
  • 阅读320

设备状态监测中处理工业数据分部不平衡的重采样技术(上)

本期给大家推荐魏建安教授的设备状态监测中处理工业数据分部不平衡的重采样技术综述。在工业生产中,机器设备大部分时间处于正常运行状态,故障发生的时间极为短暂,导致故障数据稀缺,数据集普遍存在不平衡问题。随着制造业的快速发展,复杂设备的故障数据往往伴随噪声和多重不平衡现象,给故障诊断带来巨大挑战。本文将从数据预处理、特征提取和分类器改进三个方面,系统分析当前不平衡数据分类的主要方法,并探讨这些方法在工业场景中的应用及未来研究方向。

  • 2024-11-06
  • 阅读376

基于单侧对齐策略下的类别缺失鲁棒域自适应故障诊断

在本文中,我们证明了当目标训练数据集中存在缺失类别时,直接应用对抗域自适应技术会导致性能下降。为了克服这个问题,我们利用源域的类间关系提出了单侧对齐,这是一种简单而有效的训练策略。我们在故障诊断任务上的实验展示了所提出的领域自适应方法在工业应用中的潜力,其中缺失类别的问题对所应用的方法施加了显着的限制。发展所提出的模型在样本缺失情况下的性能是未来的发展方向之一。

  • 2024-11-06
  • 阅读322

轴承损伤形式及应对策略(一)|剥落、表皮剥落、刮伤、轻微擦伤、断裂

在大数据驱动和深度学习赋能的今天,针对旋转机械故障诊断的研究层出不穷。但目前绝大部分研究聚焦的是故障特征提取、深度学习算法开发与改进。作为机械行业学习/从业者,我们似乎在计算机技术快速发展的今天逐渐遗忘了基础知识的研究:轴承到底有哪些损伤形式(试验台人为缺口、激光点蚀与真实损伤形式差距有多大)、各类损伤产生的原因是什么、工程实际的损伤具体表现形式是什么,在研究轴承故障诊断今生的同时,轴承故障的前世不应被我们逐渐忘记,该系列将和大家分享和交流轴承损伤形式及应对策略,由于作者水平有限,文章的介绍难免有误,欢迎交流讨论! 分享的轴承损伤基础知识将按以下内容进行展开,损伤特征信号及诊断方法将在后续进行介绍: 第一期:轴承滚动痕迹/磨损路径、轴承的剥落、表皮剥落、刮伤、轻微擦伤、断裂 第二期:轴承的裂纹、保持架的损伤、压痕、点蚀、磨损、微动磨损 第三期:轴承的伪布氏压痕、蠕变、咬粘、电蚀、锈蚀、安装伤痕、变色

  • 2024-11-06
  • 阅读349

基于局部加权PSFA的非线性动态过程虚拟传感器建模

本文提出了一种扩展的PSFA,用于处理复杂的动态和非线性工业过程数据。传统的PSFA算法只考虑动态特性,而忽略了非线性信息。为了解决这个问题,将局部加权技术引入PSFA的动态LVM中,以获得LWPSFA。在LWPSFA中,计算了两种权重来设计非线性近似的WLLF。然后,使用EM算法计算参数。最后,将提出的LWPSFA方法用于两个真实工业过程的软测量建模。实验结果表明,LWPSFA的性能远优于PSFA和OPSFA,具有更高的R'和更低的RMSE。然而,在未来的工作中可以考虑一些改进的局限性。首先,这两个重要参数(和)应该通过优化方法获得。此外,在许多过程中,实际噪声可能不服从高斯分布。因此,如何在噪声非高斯分布的情况下更新LWPSFA将是未来研究的重点。最后,如何处理LWPSFA中缺失的输入数据的问题值得研究。

  • 2024-11-06
  • 阅读321
上一页 1 …… 21602161216221632164216521662167216821692170 …… 2191 下一页 共 17527 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读98
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读86
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读97
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读138
  • 下载4

最新上线

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读54
  • 下载0

2025全球人工智能展望报告

2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。

  • 阅读9
  • 下载0

算力是人工智能的基础设施

机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。

  • 阅读22
  • 下载0

2026六大未来产业发展趋势与人工智能八大落地场景洞察

2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力

  • 阅读24
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南