本期给大家推荐李乃鹏教授的一种基于片段数据的非参数退化建模剩余寿命预测方法。基于状态维修(CBM)通过预测设备剩余使用寿命(RUL),在设备发生故障前制定维修计划,是保证设备安全运行的有效手段。由于监测中断和/或传感器读数丢失会产生片段数据。而片段数据只记录了一个随机的退化过程,初始退化时间信息通常会丢失。因此,无法使用常用的时间相关建模框架对其进行建模。为解决这一问题,文章提出了一种基于片段数据的非参数退化建模方法用于RUL预测。该方法利用基于退化状态的函数定义剩余寿命。并提出了一种基于极大似然估计的主分析(PAMLE)算法来恢复故障单元的缺失数据。最后,通过疲劳裂纹扩展数据集和锂离子电池退化数据集验证了该方法的有效性。