• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

IEEETIM多尺度深度注意Q网络:一种用于齿轮箱不平衡故障诊断的深度强化学习新方法

确保机械驱动系统的安全在很大程度上依赖于准确的变速箱故障诊断。然而,实际多工况和不均匀样本分布的存在使变速箱的故障诊断更具挑战性。尽管使用卷积神经网络(CNNs)的智能故障诊断(IFD)已经显示出有希望的结果,但它们通常需要强大的反馈学习和经验丰富的超参数调整来完成不同的任务。在本文中,从深度强化学习(DRL)的角度提出了一种新的方法,称为多尺度深度注意力Q网络(MDAQN),用于不平衡齿轮箱故障诊断。引入了一种考虑类间偏差的不平衡分类马尔可夫决策过程(ICMDP),作为数据不平衡情况下增强分类策略学习的环境模拟。此外,设计了一种新的多尺度注意力卷积网络作为深度Q网络(DQN)算法的代理结构,从而提高了在复杂运行条件下的判别特征学习能力。通过利用DRL的弱反馈交互,对诊断模型进行训练,从而有效地进行不平衡齿轮箱故障诊断。在三个齿轮箱不平衡数据集上的实验结果表明,MDAQN表现出优越的特征提取能力和泛化能力,与多种现有方法相比,准确率超过99.0%。Index Terms—注意力,深度强化学习(DRL),变速箱,不平衡故障诊断,多尺度学习

  • 2024-12-23
  • 阅读399

PLC、传感器、编码器、变频器、继电器彩图接线及常识汇总

实际工程案例体现了各设备的协同作用,选型时需结合场景需求(如精度、环境、安全标准),并通过合理配置和编程实现预期效果。案例中的经验教训也提示用户注意细节,避免常见错误。

  • 2025-07-06
  • 阅读506

储能技术课件-面向新型电力系统的新型储能电站系统集成及运营支撑关键技术

高效的散热及温度均衡控制技术 , 降低电池的温升及温差; 针对不同的应用场景和站址 , 采用合适的技术方案; 运维过程中的温度均衡控制技术;

  • 2024-11-16
  • 阅读153
  • 下载0
  • 15页
  • pptx

从“双碳”目标认知到碳资产管理

中国提出“30·60”的“双碳”目标,这一承诺带来的产业结构调整是生活生产方式、发展理念和发展方式系统性的变革,是技术创新、投资理念和配套制度的变革。一方面发展必然带来碳排放,另一方面时间短、任务重,有效实施并非容易的事。因此,需要深入思考在制订“双碳”目标和行动方案的前提下,资产视角下的运营和结合乡村振兴的创新投资模式。

  • 2024-11-16
  • 阅读204
  • 下载0
  • 3页
  • pdf

SCI一区论文学习|一种基于片段数据的非参数退化建模剩余寿命预测方法

本期给大家推荐李乃鹏教授的一种基于片段数据的非参数退化建模剩余寿命预测方法。基于状态维修(CBM)通过预测设备剩余使用寿命(RUL),在设备发生故障前制定维修计划,是保证设备安全运行的有效手段。由于监测中断和/或传感器读数丢失会产生片段数据。而片段数据只记录了一个随机的退化过程,初始退化时间信息通常会丢失。因此,无法使用常用的时间相关建模框架对其进行建模。为解决这一问题,文章提出了一种基于片段数据的非参数退化建模方法用于RUL预测。该方法利用基于退化状态的函数定义剩余寿命。并提出了一种基于极大似然估计的主分析(PAMLE)算法来恢复故障单元的缺失数据。最后,通过疲劳裂纹扩展数据集和锂离子电池退化数据集验证了该方法的有效性。

  • 2024-11-30
  • 阅读309

基于贝叶斯深度学习的预后驱动预测性维护框架

在这项工作中,提出了一种新的预测驱动的产品数据管理框架,它提供了一个集成RUL预测和维护决策的综合解决方案。在预测阶段,我们采用基于BDL的框架来限定任意的和认知的不确定性,并输出RUL的预测性分布。在维修决策阶段,提出了一种在一般检查场景下的实用策略。该模型能够在任何时刻快速评估R选项和DN选项的成本率,并生成满足操作约束的暂定的产品数据管理计划。随着逐步收集更多的CM数据,我们的框架动态更新和调整维护和备件订购决策,以生成更可靠的PDM时间表。通过与几种基准策略的比较,基于NASA Ames预测卓越中心提供的涡扇发动机数据集,我们发现基于BDL方法驱动的基准策略可以在不确定性量化的情况下增强预测结果,从而提高动态PDM决策的性能。在定期和不定期检查的情况下,建议的政策导致的平均成本率非常接近理想的政策。这项研究对行业具有实际意义,展示了将不确定性量化和操作约束纳入到PDM政策中的好处。增强的策略性能带来了更好的维护规划,降低了成本并提高了盈利能力,同时还提高了客户满意度。

  • 2024-11-30
  • 阅读289

融入知识图谱的大模型在企业服务中应用

企业级海量数据的知识化已日趋成为行业共识,通过海量数据的知识化集成,可以加速数据标准化、消除/减少歧义、链接数据孤岛等。知识图谱作为表达能力更强的数据建模形式,也需要不断技术升级与时俱进。知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。

  • 2024-11-30
  • 阅读206

生物质废弃物产热和发电(方法学)

生物质:是指动植物和微生物的非化石结构且可生物降解的有机物质。包括农业、林业及相关产业的产品、副产品、残留物和废物,以及非化石结构且可生物降解的工业及城市垃圾的有机组成部分。生物质还包括通过非化石结构且可生物降解的有机物质分解回收的气体和液体。

  • 2024-12-03
  • 阅读163
  • 下载0
  • 26页
  • pdf
上一页 1 …… 21592160216121622163216421652166216721682169 …… 2191 下一页 共 17527 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读98
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读86
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读97
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读138
  • 下载4

最新上线

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读54
  • 下载0

2025全球人工智能展望报告

2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。

  • 阅读9
  • 下载0

算力是人工智能的基础设施

机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。

  • 阅读22
  • 下载0

2026六大未来产业发展趋势与人工智能八大落地场景洞察

2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力

  • 阅读24
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南