CNN 最初主要被用来处理二维图像,由于具有强大的认知计算能力,学者开始将其引入到机械故障诊断领域,能够很好地表征信号与机械健康状态之间复 杂的映射关系,提高大数据背景下多样性、非线性、高维健康监测数据诊断分析能力。
CNN 作为深度学习中最为重要、典型的网络之一,被引入到机械故障诊断领域,虽处于起步阶段,但研究和应用已初见成效。
工业时间序列作为一种响应生产过程信息的数据,可以进行分析和预测,以有效地监测工业生产过程。工业建模过程中,由于工况复杂、数据采集环境变化、设备运行时间短等原因,存在数据短缺、算法冷启动等问题。因此,现有的数据驱动工业时间序列预测算法的准确性受到很大限制。针对上述问题,本文提出了一种新的基于动态迁移学习的有限数据下工业过程时间序列预测方法,该方法旨在有效地利用相似设备或工况的历史数据,而不是丢弃它们,以帮助建立目标数据有限的工业时间序列预测模型。在该方法中,首先将历史数据划分为多个批次,然后根据每一批次历史数据与当前时刻有限目标数据之间的分布距离,建立一个新的具有动态最大均差损失的多源迁移学习框架。该框架还结合了多任务学习方法,建立了工业过程在线学习的多步骤预测模型。与其他常用方法相比,在太阳能发电预测和加热炉温度预测两个真实数据集上的实验证明了该方法的有效性。
非线性工业系统的建模包括两个关键阶段:选择具有紧凑参数列表的模型结构和选择估计参数列表值的算法。因此,需要开发一个足够充分的模型来表征工业系统的行为,以表示实验数据集。为许多工业系统收集的数据可能存在高度非线性和多重约束。同时,为工业过程创建一个全面的模型对于基于模型的控制系统至关重要。在这项工作中,我们探索使用所提出的Cuckoo Search(ECS)算法的增强版本来解决实际缠绕过程的线性和非线性模型结构的参数估计问题。将所开发的模型的性能与其他主流元启发式方法进行比较,以对同一过程进行建模。此外,还将这些模型与基于一些传统建模方法开发的其他模型进行了比较。进行了几次评估测试来判断基于ECS开发的模型的效率,与其他建模方法相比,ECS在训练和测试案例中都表现出了优越的性能。
云制造的发展使数据驱动的过程监控方法能够准确、及时地反映真实的工业过程状态。然而,传统的过程监控方法一旦被部署到边缘设备上,就无法更新学习的模型,这导致在面对时变数据时模型不匹配。此外,边缘的有限资源使其无法部署复杂的模型。因此,本文提出了一种新颖的云边缘协同过程监控方法。首先,收集工业过程的历史数据,建立字典学习模型,并在云中训练字典和分类器。然后,将模型简化并部署到边缘。边缘层监控过程状态,包括故障检测和工况识别,并根据错误触发策略确定是否发生了模型失配。数值模拟和工业焙烧过程结果验证了该方法的优越性。
建设以集中管理+分散控制为理念,打造智慧建筑、绿色建筑为目标,实现覆盖建筑群、楼层到单一房间的博物馆智慧运营指挥中心。平台通过大屏展示各场馆管理系统、弱电系统、人员分布等实时数据,对场馆进行集中的监视与控制,实现智慧化运营管控。
近年来,我国的建筑行业政府监管信息化建设经过多年发展,办公自动化、管理信息化的水平不断提高。但是随着政务信息资源及辖区基建工程数量的不断增长、业务处理日趋繁杂,建设工程信息化还是面临储多着诸多问题。特别是建筑工地施工现场管理一直是行业痛点,监管部门和施工企业都急需这一实际问题。
通过正向与反向的追溯,快速定位不合格原料的供应商,以及LOT号, 支持反向查询该LOT号影响的批次范围 通过正向与反向的追溯,快速定位不合格原料的供应商,以及LOT号, 支持反向查询该LOT号影响的批次范围
没有账户,需要注册
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
集团版专为集团型企业打造,包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。它通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应。
在工业数字化转型的浪潮中,中服云工业物联网平台系列产品脱颖而出,为不同规模和需求的企业提供了全面、专业的物联网平台解决方案。该系列产品包含工业物联网平台基本版(SCADA)、工业物联网平台企业版、工业物联网平台集团版、数字孪生版和工业物联网平台设备版,各版本功能特色鲜明,重点突出。助力企业提升设备智能化水平和运行效率生产效率、优化管理流程、增强决策能力。?
清华之后,北大也不甘示弱,推出了DeepSeek教程。清华的教程是传媒学院出的,而北大的这份文件是人工智能学院和计算机学院出的,所以总体上内容更加专业、全面和深入,尤其还提到了AI时代工作和技能需求的变化,可以说是不可多得的优质资料。
政府工作报告指出,从新动能和“健康中国”等战略决策高度出发,从互联网、信息化、大数据和人工智能等维度,明确为智慧城市持续赋能,有力促进智慧城市理论创新并引导、保障建设项目的有效落地与运营。
2024年,应用内购买(IAP)和订阅收入继续迅速增长,在全球范围内同比(YoY)增长13%,达到1500亿美元。这包括北美和欧洲等主要市场的强劲增长,其中美国以520亿美元的消费者支出领先。由于游戏收入增长滞后于非游戏收入,亚洲一些以游戏为重点的市场同比增长较为温和,甚至出现轻微下滑。
移动互联网流量小幅增长,用户粘性趋稳,市场进入深度存量竞争阶段:2024年移动互联网月独立设备数达14.34亿,增速平缓,用户单日使用时间及次数分别为264.3分钟、62.9次,环比略有下降,流量红利逐步消退用户结构均衡化,中高线青年群体成新增长点:未婚用户占比提升至31.9%,35岁及以下用户占49.1%,二线及以上城市用户增长1.83%。“单身经济”下中高线青年群体释放流量潜力,推动市场拓展方向。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南