工业时间序列作为一种响应生产过程信息的数据,可以进行分析和预测,以有效地监测工业生产过程。工业建模过程中,由于工况复杂、数据采集环境变化、设备运行时间短等原因,存在数据短缺、算法冷启动等问题。因此,现有的数据驱动工业时间序列预测算法的准确性受到很大限制。针对上述问题,本文提出了一种新的基于动态迁移学习的有限数据下工业过程时间序列预测方法,该方法旨在有效地利用相似设备或工况的历史数据,而不是丢弃它们,以帮助建立目标数据有限的工业时间序列预测模型。在该方法中,首先将历史数据划分为多个批次,然后根据每一批次历史数据与当前时刻有限目标数据之间的分布距离,建立一个新的具有动态最大均差损失的多源迁移学习框架。该框架还结合了多任务学习方法,建立了工业过程在线学习的多步骤预测模型。与其他常用方法相比,在太阳能发电预测和加热炉温度预测两个真实数据集上的实验证明了该方法的有效性。