多波束测深系统以条带测量的方式,可以对海底进行100%的全覆盖测量,每个条带的覆盖宽度可以达到水深的数倍。应用这种高新技术,不仅可以获得高精度的水深地形数据,还可以同时获得类似侧扫声纳测量的海底声像图,为人们提供了直观的海底形态;侧扫声纳的出现为海底探测提供了完整的海底声学图像,用于获得海底形态,并对海底物质的纹理特征进行定性的描述。利用侧扫声纳和多波束测深系统能够探测海底地形、地貌、障碍物的特点,侧扫声纳和多波束测深系统在大陆架测量、港口疏浚、渔业捕捞、水利和生态监测、海底电缆探测、油气管道布设路径地形测绘以及轮船锚泊海区检测等方面均得到了广泛的应用,且取得了明显的效果,两者都是开发和利用海洋资源必需的仪器设备。
目前水工建筑物或水下细部结构检测的主要技术手段有水下目视检测、水下激光成像、水下声呐成像等。其中,水下目视检测方法是利用目力、水下照相或录像等进行检测的方法,该方法虽操作方便、简单、应用面广,但其检测结果依赖于相机的成像效果及潜水员的业务素质,且存在一定的人身安全风险。水下激光成像方法是利用激光对水下建筑物进行扫描成像分析的检测方法,因激光在水中产生严重散射且能量损耗很大,因而检测的范围较小、成像质量较差。水下声呐成像是通过发射和接收声波进行测距定位的检测方法,分为单波束与多波束;单波束的声波发射角较大,其测量的精度相对较差;多波束可同时发射和接收多个波束,按其功能和扫描方式又分为多波束测深系统、侧扫声呐、三维成像声呐,多波束是近年发展的一种探测新技术,具有高效率、高精度、高分辨率、全覆盖的明显特点。三维成像声呐系统,借助三维显示技术,可提供水下目标外形轮廓的更多细节描述,是目前水下细部结构检测比较先进的手段。为此,本文以水下三维全景成像声呐系统(BV5000-1350)为例,介绍了其组成部分、工作原理、技术要点和应用范围,并通过工程检测实例,说明了其适用性和推广价值,为水下建筑物的探测提供了重要的技术手段。
水声通信设备用于潜水员与岸上指挥员之间的通信。传声器将指挥员的声音信号转换成电信号,电信号通过主机处理器转换为超声波信号发送到水里。超声波信号处理器接收到信号后,将其转换为电信号,电信号再通过面罩转换为声音信号传输给潜水员。水声无线通信是蛙人水下通信的主要发展趋势。相比于有线通信,水声通信距离远,可以达到10km,通信设备不影响蛙人水下作业,特别适合水下作战蛙人使用。
直达波是指由发射声源传播至水听器,而不与边界发生相互用的声波。当声源与水听器同时位于浅表层,且深度远小于水深时,直达波还包括海面一次发射的声波[2],并将与海面、海底同时作用后的声波统称为海底反射波。深海脉冲传播多途效应相对显著,对于高信噪比(signal-to-noise ratio,SNR)数据,可从时域波形对目标信号进行识别区分,进而得到各声波的到达时差、声强差异;对于多元垂向阵(vertical line array,VLA),可对比研究多途声波的垂向分布特征。
近年来,全球深海探测行业已经趋于成熟。诸如搜索泰坦尼克号和找回美国失事挑战者号航天飞机任务的顺利开展也都进一步加速了这一领域科技的发展[1-3]。2014年3月8日,MH370失事以来共经历了水面搜救和水下探测搜救两个阶段,来自25个国家的65架飞机和95艘舰船及专家在印度洋面上搜寻了数月时间,动用了水下声波探仪、水下航行器“蓝鳍金枪鱼-21”、海底声纳等设备[4]。MH370的搜救给全球深海探测行业提出了新的挑战,如何综合利用现代的探测技术对深海失事飞机或船只残骸展开探测和搜救,对于深海探测行业的发展有着重要的作用和意义。尤其对于中国,深远海搜救技术和方法落后于西方发达国家[2]。本文以MH370的搜救为例,分析了海洋测量技术在深远海搜救中的应用,探讨了目前我国开展深远海搜救面临的问题和解决的措施,希望能够对我国进一步规范和完善深远海搜救技术有一定的指导意义。
人类对于水下探测与搜寻基本靠‘声’。人类的听力系统并非为水中环境而设计,潜入水后“听”到的一切都变得模糊起来,仿佛一切水下的东西都在朦胧的声音中变得缓慢而压抑,而极深的海底则是一片绝对寂静。事实上,声音能以五倍于空气中的速度在水中传播。
浅地层剖面测量是一种基于水声学原理的连续走航式探测浅部地层结构和构造的地球物理方法,因其具有低耗、高效、直观的特点,在探查海底浅部地层结构,了解断裂构造的分布、埋藏古河道、浅层气、海底塌陷和滑坡等地质灾害情况,在航道建设、管道检测等近海工程以及海沙资源调查、天然气水合物调查、冷泉探测等资源调查中得到了广泛的应用。为国民经济可持续发展、海域划界和国防建设提供基础地质资料。
电子海图显示与信息系统(ECDIS)能大幅提高军事航海作业效率、保障航行安全、改善战场空间态势感知,满足信息化条件下海战对高效、精确、智能化导航和作战需要,是以往几个世纪之久的纸质海图导航方式的跨越性重大转变。美军采用海军电子海图显示与信息系统(ECDIS-N),北约采用舰艇电子海图显示与信息系统(WECDIS),纷纷从纸图导航向电子海图导航的转变。20世纪90年代美军论证将民用电子海图导航系统与海军需求融合成ECDIS-N系统。1998年海军作战部长发布《美国海军电子海图显示与信息系统政策》,指出ECDIS-N将是21世纪美海军导航系统的中心部分。2001年1月颁布军用标准《海军电子海图显示与信息系统性能标准与测试方法》。2005年7月美军公布未来几年其海军传统纸质海图将完全由先进、交互、电子导航系统取代,2009年在水面舰艇和潜艇上装备ECDIS-N系统。2011年《美国海军作战部长指南》指出美军加快向ECDIS-N转变,作为各型舰艇必需导航手段。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
绿盟科技集团股份有限公司(以下简称绿盟科技),成立于2000年4月,总部位于北京。公司于2014年1月 29日在深圳证券交易所创业板上市,证券代码:300369。绿盟科技在国内设有50 余个分支机构,为政府、金融、运营商、能源、交通、科教文卫等行业用户与各类型企业用户,提供全线网络安全产品、全方位安全解决方案和体系化安全运营服务。公司在美国硅谷、日本东京、英国伦敦、新加坡及巴西圣保罗设立海外子公司和办事处,深入开展全球业务,打造全球网络安全行业的中国品牌。
2025年中央经济工作会议指出,我国经济基础稳、优势多、韧性强、潜能大,长期向好的支撑条件和基本趋势没有变,经济发展前景十分光明。面对全球经济格局。深度调整,国内居民财富持续积累与资产配置需求日趋多元化,中国财富管理市场机遇与挑战并存。
2025?年,全球人工智能飞速发展,技术、应用、生态协同共振,重塑开发范式、改变人机交互模式,催生更多个体与行业智能化应用,逐步实现从“有能力”走向“有用处”,人工智能与经济社会的融合正从浅入深加速推进。
洪水之后,人们聚集在美索不达米亚平原,试图建造一座高耸人云的巴别塔,以表达对神的挑战和追求不朽的渴望。然而,神看到来人们的傲慢和野心,为了制止人类,神让语言变得纷繁复杂,散乱、多样而神秘,不再能够被感官所通达。语言的封闭以及有意无意的模糊让人们互为聋哑,彼此为限,最终导致了混乱和困扰,巴别塔再也没有建成。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南