第09章 插值与拟合

插值:求过已知有限个数据点的近似函数。 拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义 下它在这些点上的总偏差最小。 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二 者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时 容易确定,有时则并不明显。 §1 插值方法 下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插 值、Hermite 插值和三次样条插值。 1.1 拉格朗日多项式插值 1.1.1 插值多项式 用多项式作为研究插值的工具,称为代数插值。其基本问题是:已知函数 f (x)在 区间[a,b]上n +1个不同点 x0 , x1 ,L, xn 处的函数值 yi = f (xi) (i = 0,1,L,n) ,求一个 至多n 次多项式 ? n (x) = a0 + a1x +L+ an x n (1) 使其在给定点处与 f (x)同值,即满足插值条件 ? n (xi) = f (xi) = yi (i = 0,1,L,n) (2) ? n (x)称为插值多项式,xi(i = 0,1,L,n) 称为插值节点,简称节点,[a,b]称为插值区 间。从几何上看,n 次多项式插值就是过n +1个点(xi , f (xi)) (i = 0,1,L,n) ,作一条 多项式曲线 y = ? n (x) 近似曲线 y = f (x) 。 n 次多项式(1)有n +1个待定系数,由插值条

  • 2021-10-31
  • 阅读260
  • 下载0
  • 26页
  • pdf

第04章 动态规划

动态规划的发展及研究内容 动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。20 世纪 50 年代初 R. E. Bellman 等人在研究多阶段决策过 程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程 优化问题的新方法—动态规划。1957 年出版了他的名著《Dynamic Programming》,这 是该领域的第一本著作。 动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广 泛的应用。例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动 态规划方法比用其它方法求解更为方便。 虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时 间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为 多阶段决策过程,也可以用动态规划方法方便地求解。 应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是 一种特殊算法(如线性规划是一种算法)。因而,它不象线性规划那样有一个标准的数 学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。因此,在学习 时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的 技巧去求解。 例 1 最短路线问题 图 1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。试寻求一条由 A 到G 距离最短(或费用最省)的路线。 图 1 最短

  • 2021-10-31
  • 阅读257
  • 下载0
  • 12页
  • pdf