第06章 排队论

排队论起源于 1909 年丹麦电话工程师 A. K.爱尔朗的工作,他对电话通话拥挤问 题进行了研究。1917 年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理 论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库 存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常 常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说, 到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中 出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机 待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机 性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展 的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待 时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队 系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便 根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 图 1 排队模型 图中虚线所包含的部分为排队系统。各个顾客从顾客源出发,随机地来到服务机构,按 一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员 组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的 众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。 因此,顾客总希望服务 机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而 会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权 衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则

  • 2021-10-31
  • 阅读272
  • 下载0
  • 36页
  • pdf

第13章 微分方程建模

微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微 分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以 下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。 列方程常见的方法有: (i)按规律直接列方程 在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉, 并直接由微分方程所描述。如牛顿第二定律、放射性物质的放射性规律等。我们常利用 这些规律对某些实际问题列出微分方程。 (ii)微元分析法与任意区域上取积分的方法 自然界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。对 于这类问题,我们不能直接列出自变量和未知函数及其变化率之间的关系式,而是通过 微元分析法,利用已知的规律建立一些变量(自变量与未知函数)的微元之间的关系式, 然后再通过取极限的方法得到微分方程,或等价地通过任意区域上取积分的方法来建立 微分方程。 (iii)模拟近似法 在生物、经济等学科中,许多现象所满足的规律并不很清楚而且相当复杂,因而需 要根据实际资料或大量的实验数据,提出各种假设。在一定的假设下,给出实际现象所 满足的规律,然后利用适当的数学方法列出微分方程。 在实际的微分方程建模过程中,也往往是上述方法的综合应用。不论应用哪种方法, 通常要根据实际情况,作出一定的假设与简化,并要把模型的理论或计算结果与实际情 况进行对照验证,以修改模型使之更准确地描述实际问题并进而达到预测预报的目的。 本章将利用上述方法讨论具体的微分方程的建模问题

  • 2021-10-31
  • 阅读271
  • 下载0
  • 14页
  • pdf

第11章 方差分析

我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病 人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体 的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。而你在实际生产和生活中 可以举出许多这样的问题:从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿 命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在 若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。 可以看到,为了使生产过程稳定,达到优质、高产,需要对影响产品质量的因素进 行分析,找出有显著影响的那些因素,除了从机理方面进行研究外,常常要作许多试验, 对结果作分析、比较,寻求规律。用数理统计分析试验结果、鉴别各因素对结果影响程 度的方法称为方差分析(Analysis Of Variance),记作 ANOVA。 人们关心的试验结果称为指标,试验中需要考察、可以控制的条件称为因素或因子, 因素所处的状态称为水平。上面提到的灯泡寿命问题是单因素试验,小麦产量问题是双 因素试验。处理这些试验结果的统计方法就称为单因素方差分析和双因素方差分析。 §1 单因素方差分析 只考虑一个因素 A 对所关心的指标的影响, A 取几个水平,在每个水平上作若干 个试验,试验过程中除 A 外其它影响指标的因素都保持不变(只有随机因素存在),我 们的任务是从试验结果推断,因素 A 对指标有无显著影响,即当 A 取不同水平时指标 有无显著差别。 A 取某个水平下的指标视为随机变量,判断 A 取不同水平时指标有无显著差别, 相当于检验若干总体的均值是否相等

  • 2021-10-31
  • 阅读271
  • 下载0
  • 13页
  • pdf