佩戴安全帽作为施工场地的重要防护措施,在意外来临时可有效保护施工人员的头部. 因此高效、精准的检测安全帽的佩戴十分重要. 本文将使用 YOLOv5 目标检测算法,实现安全帽戴检
储能电池的关键是材料。继实验观测、理论研究和计算模拟之后,数据驱动的机器学习具有快速捕捉材料成分-结构-工艺-性能间复杂构效关系的优势,有望为电化学储能材料的研发提供新的范式
传统监控视频中,建筑工地目标多、分布散,传统人工安全管理方式无法实现完全覆盖和及时发现,大部分视频监控影像仅作为事后追溯取证使用,无法对人的不安全行为、物的不安全状态进行主动识别预警。
针对目前铁轨异物目标检测中,铁轨边缘提取困难,边缘检测结果不清晰,完整性较差等问题,提出一种基于新型改进 Canny算法的铁轨边缘检测方法。
在复杂的施工环境中,基于机器视觉技术的安全帽佩戴检测算法常常出现漏检、误检,其检测能力有限。为提高安全帽佩戴检测的精度,本文建立了一种基于注意力机制的双向特征金字塔的安全帽检测卷积神经网络
水体和植被组成的“蓝绿空间”能够有效减缓城市热岛效应,探究其时空变化特征和影响因素对于改善城市环境和促进区域绿色低碳发展具有重要意义。
随着城市化进程的不断加快及暴雨等极端天气的时有发生,道路积水问题愈发严重,影响了市民的出行和城市正常运行,因此有必要对道路积水信息进行动态可视化,而数据的集成与管理是从多源数据到道路积水信息的关键一环。
随着清洁能源系统的推广应用,锂离子电池、固体氧化物燃料电池作为清洁能源器件受到广泛的关注。然而,作为复杂的电力动力系统,电池的商用化一直面临长时间、多维度、高精度的性能预测需求,一些新型的电池性能预测方法仍处于起步探索阶段。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南