基于时空大数据的粤港澳大湾区城镇群结构研究

粤港澳大湾区是中国重点建设的战略区域,其协同结构的有效认知是打造世界级湾区的核心研究内容。作为一种重要的城镇群发展模式,大湾区内部具有复杂的城镇协同关系,这一关系充分体现在城镇间的人群流动特性上,而跨城职住迁徙是区域人口流动的一种直观、稳定的表现,基于高精度跨城职住迁徙数据开展湾区协同结构的认知意义显著。文章在总结归纳国内外湾区协调发展研究、跨城职住综合应用研究的基础上,基于百度地图所识别的跨城职住时空大数据开展了粤港澳大湾区协同认知方法的研究与实践。研究构建了跨城职住交换网络,以统计单元为网络节点、以交换流量为连接权重,从加权连人连出度占比、加权中心度、迁徙平均距离3个方面认知跨城职住关系。研究进一步结合经济数据展开城镇群协同关系的聚类分析,将大湾区内各空间单元归纳为交流中心单元、优势单元及其特例、待发展单元、输出型单元、输入型单元6类。研究结果发现,当下粤港澳大湾区构建了广州一佛山、中山一珠海、深一莞一惠3处交换结构异质性组团,多中心发展结构明显。同时湾区协同不均衡的问题仍然存在,各类协同特征单元呈显著的圈层结构分布,东西岸城镇交换关系差异明显。最后,本文结合大湾区区域综合结构特征以及大湾区相关规划政策空间布局特征,阐述了大湾区内城镇群结构的发展状态、发展问题以及未来方向。指出未来粤澳大湾区的发展需要进一步加强多中心协调机制优势,解决区域内东强西弱、周边滞后、核心北移等结构问题。梳理各类单元间的合作模式,强化协同网络中优势空间单元的贡献程度,巩固交流中心单元的参与程度,避免极核同周边形成单向的输入输出,充分利用广阔的湾区腹地促进区域功能的循环与互补,以期为粤港澳大湾区的协同发展提供支持。

  • 2021-06-18
  • 阅读165
  • 下载0
  • 12页
  • pdf

基于云端大数据的智能导向钻井技术方法 (1)

导向钻井技术方法是 21 世纪全球石油工业最重要的技术之一,也是美国“页岩气革命”核心技术水平钻井的关键组 成部分。当前,导向钻井的主要研究目标是提高钻井速度、降低钻井时间和风险,智能化是目标实现的重要途径。文章分析 了国内外大数据与人工智能在石油工业应用情况,建立了云端大数据智能导向钻井方法架构,提出了随钻测井参数人工智能 反演与识别方法,指出了云端大数据与智能算法管理的实现途径,得出如下结论:(1)基于云端大数据智能导向钻井方法主要 包括物联网感知层、大数据存储层和云平台决策层。物联网感知层实现井场关键信息的采集并传输至大数据中心;大数据中 心支持数据存储与云管理;云平台决策层依托大数据中心的海量数据,进行云端地面软件控制、人工智能决策以及云平台管 理。(2)采用机器学习的方法智能反演与识别地层岩性,选择自然电位、自然伽马、密度、声波、补偿中子、电阻率等 6 条随钻 测井数据,分别采用不同的机器学习算法进行地层岩性反演与识别,决策树模型和随机森林模型分别达到 0. 81 和 0. 89 的准 确度,形成了一套可快速自动描述岩性特性分类的方案。(3)云端平台管理决策可进行井下实时数据解码,获取钻井轨迹和 测井曲线,其中云端人工智能决策模块对地层及钻井参数进行智能反演预测,可实现钻井轨迹智能修正和钻井参数智能优 化,保证智能导向工程钻得准、钻得快。

  • 2021-06-21
  • 阅读84
  • 下载0
  • 9页
  • pdf