当前网络规模不断扩大,网络环境日趋复杂,安全威胁也日益加剧,网络态势感知是在此大数据背景下的时代产物。网络安全态势感知包含态势理解、态势评估、态势预测及态势可视化4个环节。态势评估是网络态势感知的核心环节,针对评估方法中的粗糙集方法,由于粗糙集只能应对离散型的态势因子,对于连续型的态势因子需要做离散化处理,离散化方法将损失精度,若离散化方法选取不当,甚至将改变原始态势信息。模糊粗糙集方法是粗糙集的扩展方法,利用模糊集在描述模糊性上的优势,使得该方法能够直接处理连续型态势因子,但由于计算时间复杂度过高,难以应对大规模数据。通过大量实践,我们得出了一种基于聚合的模糊粗糙集方法,该方法通过一种规则聚合方式,缩减了规则数量,并通过定义聚合后规则的相似性度量,继而应用模糊粗糙集方法进行属性约简,得到约简的态势决策规则,使得模糊粗糙集方法在时间复杂度上变得可行。
在新基建,数字经济的政策推动下,行业数字化转型建设如火如荼,本文提出了一种业务为主线的数字化转型建设的基本模型:数据应用业务链,并以数据应用业务链的业务的数据,数据的业务,业务的业务的三个环节探讨了数字化转型建设的能力构建及其基本过程并划分了可合作的能力属性,为数字化转型建设指明道路。
互联网时代,尤其是社交网络、电子商务与移动通讯把人类社会带入一个以PB为单位的结构与非结构数据信息的新时代,它就是“大数据(BigData)”时代。 大数据为云计算的大规模与分布式的计算能力提供了应用的空间,解决了传统计算机无法解决的问题。这个领域的计算标准与软件均刚刚起步,为全世界新型软、硬件及应用创新提供了前所未有的机会。
什么是智能工厂? 智能工厂是指利用物联网技术和监控技术加强信息管理服务,提高生产过 程可控性、减少生产线人工干预,集智能手段和智能系统等新兴技术于- -体 ,构建高效、节能、绿色、环保、舒适的人性化工厂。
为指导当前和未来一段时间工业互联网标准化工作,解决标准缺 失、滞后、交叉重复等问题,落实国务院“关于深化’互联网+先进 制造业’发展工业互联网的指导意见”,由工业和信息化部指导,在 紧密结合《工业互联网标准体系框架(版本 1.0)》、全面总结工业互联网标准化需求基础上,工业互联网产业联盟(以下简称“联盟”)组织撰写《工业互联网标准体系(版本 2.0)》,修订了工业互联网标准体系框架及重点标准化方向,梳理了已有工业互联网标准及未来要制定的联盟标准,形成统一、综合、开放的工业互联网标准体系
大数据渗透各行各业,不同的行业在数据量、数据来源与数据类型方面有着较显著差异,因此也决定了大数据在行业应用方面存在较大差异
当前,以物联网、大数据、人工智能等新技术为代表的数字浪潮席卷全球,物理世界和与之对应的数字世界正形成两大体系平行发展、相互作用。数字世界为了服务物理世界而存在,物理世界因为数字世界变得高效有序,数字孪生技术应运而生,从制造业逐步 延伸拓展至城市空间,深刻影响着城市规划、建设与发展。数字孪生因感知控制技术而起,因综合技术集成创新而兴。数字孪生城市是在城市累积数据从量变到质变,在感知建模、人工智能等信息技术取得重大突破的背景下,建设新型智慧城市的一条新兴技术路径,是城市智能化、运营可持续化的前沿先进模式,也是一个吸引高端智力资源共同参与,从局部应用到全局优化,持续迭代更新的城市级创新平台。
首先看一下58大数据平台架构。大的方面来说分为三层:数据基础平台层、数据应用平台层、数据应用层,还有两列监控与报警和平台管理。 数据基础平台层又分为四个子层: 接入层,包括了Canal/Sqoop(主要解决数据库数据接入问题)、还有大量的数据采用Flume解决方案; 存储层,典型的系统HDFS(文件存储)、HBase(KV存储)、Kafka(消息缓存); 再往上就是调度层,这个层次上我们采用了Yarn的统一调度以及Kubernetes的基于容器的管理和调度的技术; 再往上是计算层,包含了典型的所有计算模型的计算引擎,包含了MR、HIVE、Storm、Spark、Kylin以及深度学习平台比如Caffe、Tensorflow等等。 数据应用平台主要包括以下功能: 元信息管理,还有针对所有计算引擎、计算引擎job的作业管理,之后就是交互分析、多维分析以及数据可视化的功能。 再往上是支撑58集团的数据业务,比如说流量统计、用户行为分析、用户画像、搜索、广告等等。 针对业务、数据、服务、硬件要有完备的检测与报警体系。 平台管理方面,需要对流程、权限、配额、升级、版本、机器要有很全面的管理平台。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
算力互联网的发展和演进是一个持续不断的过程,编制组将密切关注国内外算力互联网的发展动态,积极听取产业界的意见与建议,不断完善和优化算力互联网体系架构的研究内容,适时修订并发布报告的新版本,以更好地推动算力互联网发展。
为更好地推动数据智能服务产业发展,本报告从数据智能服务产业定义、要素、载体、产业链、创新模式等方面开展研究工作。第一部分数据智能服务产业概念界定、内涵特征以及全球趋势;第二部分分析数据智能服务产业的核心关键要素;第三部分阐述数据智能服务产业链结构以及产业生态图谱;第四部分阐述数据智能服务的产业载体,第五部分总结了数据智能服务产业的创新模式,最后根据上述研究,从技术、应用、产业、安全等四个方面分析趋势,为我国数据智能服务产业发展提供参考。
通过深度学习嵌入算法可以对离散序列数据一自然语言文本进行计算分析。 主要应用方向是文本信息抽取,包括文本分类、关键实体识别、实体之间关系识别以及事件识别。
利用人与大数据技术,结合专业的中医疾病、证候/治则知识库、疾病知识图谱等,研发了医用智能处方椎荐系统。它能够无缝植入到医院现有的HIS和医生工作中,不改变医生工作流程,输入患者信息、证候、主诉等信息智能推荐方剂和备用饮片药,医生进行加减化裁即可成方,节省医生诊疗时间,提高工作效率。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南