随着工业4.0技术的发展,降低维护成本并结合深度学习(DL)技术确保新型核系统的安全是一种流行趋势。本文提出了一种基于设计的自适应残差卷积神经网络(ARCNNs)的小型模块化反应堆(SMR)智能故障检测与诊断系统(lFDD)。不同噪声水平下的特征被学习为残差,并通过设计的网络传递。此外,自适应残差处理(ARP)模块中组装的软阈值(ST)方法提高了学习效率。采用贝叶斯优化(B0)方法提高设计网络的学习衰减率(LDR),以获得更好的诊断性能。从已建立的中国铅基核反应堆(CLEAR)平台上收集了11种不同操作场景下三种不同噪声水平的1760个实验数据点,以验证所提出的LFDD的有效性。与以往工作中采用的传统RCNN和CNN的比较突显了所提出的诊断方法的优越性。使用B0方法进一步提高了lfDD的性能。作为SlMR智能研究的首次尝试,该方法将为无人值守条件下的核操作员提供远程决策支持。此外,该通用方法也可应用于其他无噪声环境下的诊断系统。关键词:故障检测与诊断、深度学习、残差CNN、贝叶斯优化、小型模块化反应堆。
软传感器作为一种重要的智能检测技术,已广泛应用于现代加工行业,实现对产品质量的有效监测和预测。然而,在实际工业过程建模中,模型输入和结构的冗余通常会导致建模复杂性增加和模型性能下降。在本研究中,提出了一种基于双非负绞杀(DNNG)方法的长短期记忆(LSTM)软传感器输入变量选择和结构优化算法。首先,使用过程数据集构建训练有素的初始LSTM模型,以捕捉工业过程的时间动态行为。其次,将DNNG算法集成到LSTM中,以减少输入变量和隐藏节点的冗余。该策略有效地为模型选择了最一致的输入变量,同时通过消除冗余的递归隐藏节点来简化LSTM结构,以降低模型过拟合的风险。此外,通过将网格搜索与块交叉验证相结合来确定模型的超参数。最后,通过数值算例将所开发的算法与其他最先进的算法进行了比较,并用于预测燃煤电厂脱硫系统净烟气排放中的SO2浓度。对比结果表明,该算法有效地消除了冗余变量,简化了模型结构,同时比其他算法具有更好的预测性能。
本文将介绍一种基于神经元级共享的 CTR、CVR 多任务联合预估的方法。分享分为两大部分:第一部分介绍多任务学习相关发展;第二部分具体介绍我们提出的一种多任务联合预估的方法。 全文目录如下: 1. 多任务学习的背景介绍 2. 多任务经典模型结构 3. 一种基于神经元级共享的 CTR、CVR 多任务联合预估的方法
党的十八大以来,我国深入实施网络强国战略、大数据战略、数字经济发展战略,印发“十四五”数字经济发展规划”,有关部门认真落实各项部署,加快推进数字产业化和产业数字化,推动数字经济蓬勃发展。随着2023年开春,31个省区市政府相继发布对应的年度政府工作报告以及经济运行“成绩单”。从各地政府工作报告和经济运行情况来看,数字经济发展引擎地位巩固,各具特色的数字化应用加速落地,彰显出逆势而上的发展韧性,已成为各地扩大投资、提振消费的重要力量。
嵌入式系统由硬件和软件组成.是能够独立进行运作的器件。其软件内容只包括软件运行环境及其操作系统。硬件内容包括信号处理器、存储器、通信模块等在内的多方面的内容。
由于采用智能机械制造可以对工作中的一些工作步骤进行节省,所以具有的便捷性高,由于智能化技术中的安全性也较高
打造开放共赢新增长生态,萨摩耶云可为传统金融机构提供量身定制转型服务,助其提升科学决策水平与智能化服务能力,对此深得市场认可,被时代周报2021年度金桔奖评为“科技
《大话数据结构》以一个计算机教师教学为场景,讲解数据结构和相关算法的知识。通篇以一种趣味方式来叙述,大量引用了各种各样的生活知识来类比,并充分运用图形语
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南