基于似然函数的自适应Singer模型滤波算法_蒋冬婷
Singer模型滤波算法可以对机动目标进行有效跟踪,但其模型参数的确定依赖于先验知识,且一旦确定,将在滤波过程中不再变化.因此,当事先确定的参数与目标机动不匹配时,跟踪精度会变得比较差.针对模型参数失配时,传统Singer模型不能有效跟踪机动目标的问题,提出一种自适应Singer模型滤波算法.在滤波过程中,构造多模型的模型似然函数,并随着滤波过程实时计算模型似然函数,根据似然函数的变化,自适应调整Singer模型加速度参数.仿真表明,该算法能够有效跟踪目标不同的机动情况,滤波效果较固定参数的Singer模型算法和离散自适应Singer模型算法更优.
- 2021-05-07
- 阅读363
- 下载0
- 6页
- pdf