• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

GaN基功率器件的好搭档:金刚石散热衬底

近十年来,氮化镓(GaN)的研究热潮席卷了全球的电子工业,这种材料属于宽禁带半导体材料,具有禁带宽度大、热导率高、电子饱和漂移速度高、易于形成异质结构等优异性能,非常适于研制高频、大功率微波、毫米波器件和电路,在5G通讯、航天、国防等领域具有极高的应用价值,是近20余年以来研制微波功率器件最理想的半导体材料。

  • 2022-01-28
  • 阅读103
  • 下载0
  • 6页
  • docx

聚晶金刚石的特点、应用、分类及聚结机理

本文主要介绍了聚晶金刚石的特点及应用、烧结型聚晶金刚石的分类、烧结型聚晶金刚石的聚结机理。聚晶金刚石除了具有金刚石的一些性能外,还具有一些其它的优异性能,如:可以直接合成或加工成特定规整形状;可以设计或预测新产品的性能,赋予产品必要的特点等。PCD目前主要用于切削工具、石油钻探工具、拉丝模、矿山开采和耐磨元件等领域。根据PCD中晶粒结合情况可把PCD分为自身烧结和中介结合烧结两种。烧结型PCD可分为无添加剂和有添加剂两种。

  • 2022-01-27
  • 阅读127
  • 下载0
  • 7页
  • docx

钙钛矿场效应晶体管中的离子迁移

场效应晶体管是一种通过电压控制电路的电子开关,是现代电子技术的关键元件。随着新型半导体材料的发展,场效应晶体管沟道材料的选择更加多样化。近年来,钙钛矿材料作为一种新型的有机无机杂化半导体材料在光伏和发光领域发展迅速,但由于其本身具有离子迁移的特性,限制了其在场效应晶体管领域的发展。钙钛矿材料中的离子迁移能够引起栅极电场的部分屏蔽,影响栅极的调制作用,降低场效应晶体管的迁移率。本文系统阐释了离子迁移现象的产生机理,总结了抑制离子迁移的方法,最后展望了钙钛矿晶体管的应用前景。

  • 2022-01-27
  • 阅读160
  • 下载0
  • 15页
  • docx

超快激光纳米线连接技术研究进展

随着新型材料特别是纳米材料在柔性多功能微纳光电子器件中的广泛应用,实现低维度下高质量材料互连成为了微纳器件高性能制造的关键?针对纳米材料自身的尺度及结构限制,传统宏观?微观尺度下的材料互连技术将难以实现在微纳空间上对输入能量的高精度控制,进而难以降低连接过程中的材料损伤?

  • 2022-01-27
  • 阅读137
  • 下载0
  • 20页
  • docx

高功率半导体激光器散热方法综述

散热管理是保障半导体激光器功率稳定性的关键因素。因此,了解半导体激光器的传热过程并解决其散热问题,是 实现半导体激光器工程化应用的重要环节。对半导体激光器散热管理方式的工作原理和典型散热方法进行了综述,期望为从事 高功率半导体激光研究的人员提供技术参考。

  • 2022-01-27
  • 阅读125
  • 下载0
  • 13页
  • docx

基于碳化硅衬底的宽禁带半导体外延

宽禁带半导体具备禁带宽度大、电子饱和飘移速度高、击穿场强大等优势,是制备高功率密度、高频率、低损耗电子器件的理想材料。碳化硅(SiC)材料具有热导率高、化学稳定性好、耐高温等优点,在 SiC 衬底上外延宽禁带半导体材料,对充分发挥宽禁带半导体材料的优势,并提升宽禁带半导体电子器件的性能具有重要意义。得益于 SiC 衬底质量持续提升及成本不断降低,基于 SiC 衬底的宽禁带半导体电子市场呈现逐年增加的态势。在 SiC 衬底上外延生长高质量的宽禁带半导体材料是提高宽禁带半导体电子器件性能及可靠性的关键瓶颈。本文综述了近年来国内外研究者们在 SiC 衬底上外延 SiC、氮化镓(GaN)、氧化镓(Ga2O3)所取得的研究 进展,并展望了 SiC 衬底上宽禁带半导体外延的发展及应用前景。

  • 2022-01-27
  • 阅读95
  • 下载0
  • 13页
  • docx

关于石墨烯的制备与改性方法及其应用领域

石墨烯是一种由s p 杂化单层碳原子构成的二维蜂窝状晶格结构薄膜, 在石墨烯中,碳原子在不停地振动, 振动幅度可超过其厚度, 有序的晶体结构赋予其特殊的晶格振动减正模能量量子即石墨烯进行热传导的声子载体, 同时由于其特殊的平面结构以及较大的横纵比, 降低了声子散射效应, 表现出优异的导热特性, 研究表明其热导率已超越石墨、碳纳米管等碳同素异形体的极限。导热填料在基体中能否相互搭接, 形成有效导热网络是表征复合材料导热性能的重要依据, 石墨烯优异的导热特性以及大片层结构, 能够很好地在填充基材中形成热流网络,获得整体导热性能优异的高导热体系。具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景.

  • 2022-01-27
  • 阅读96
  • 下载0
  • 30页
  • docx

基于聚酰亚胺的高导热石墨膜材料的研究进展

近年来,随着电子设备的小型化、轻量化,高导热石墨膜材料受到广泛关注。本文综述了聚酰亚胺(PI)基石墨膜材料的制备,详细介绍了石墨膜性能的影响因素,主要涉及分子结构、分子取向和其他材料的诱导作用等,简述了石墨膜复合材料的研究和专利近况,并对未来石墨膜材料的研究方向提出了建议与展望。

  • 2022-01-27
  • 阅读571
  • 下载1
  • 10页
  • docx
上一页 1 …… 653654655656657658659660661662663 …… 1395 下一页 共 11154 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

低空基础设施发展研究报告(2025)

当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。

  • 阅读213
  • 下载1

华为数字化转型之道

首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,

  • 阅读263
  • 下载3

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读233
  • 下载3

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读267
  • 下载2

最新上线

算法篇——PID入门教程,史上最详细的PID教程,抛弃公式,从本质上真正理解

PID是比例(Proportional)、积分(Integral)、微分(Differential)的缩写PID是一种闭环控制算法,它动态改变施加到被控对象的输出值(Out),使得被控对象某一物理量的实际值(Actual),能够快速、准确、稳定地跟踪到指定的目标值(Target)PID是一种基于误差(Error)调控的算法,其中规定:误差=目标值-实际值PID的任务是使误差始终为0PID对被控对象模型要求低,无需建模,即使被控对象内部运作规律不明确PID也能进行调控

  • 阅读6

算法篇——PID入门教程(二),从本质上真正理解PID,将连续型公式离散化,附带代码

紧接上文,我们讲的是连续形式的PID公式,但连续形式的PID需要用模拟电路来实现,对于单片机而言,我们需要离散形式的PID,本节我们就来看看离散型PID的具体实现:

  • 阅读6

算法篇——卡尔曼滤波,由浅入深,小白也能看明白

卡尔曼滤波我计划分为两部分,卡尔曼滤波(一)基础篇;算法篇——卡尔曼滤波(二)进阶,算法篇——卡尔曼滤波(三)实战

  • 阅读8

算法篇——常用的十大滤波算法

算法篇——常用的十大滤波算法

  • 阅读11
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南