钢质管道由于外界因素或自身因素产生微观结构畸变或者弹塑性形变时会产生大量应力集中区域,当应力集中达到材料屈服极限时,将很可能导致突发性事故的发生。海底油气管道由于其复杂的地理环境,在传统管道缺陷之外,更容易产生管道漂移、振动、应力集中等情况。常规的管道内缺陷检测技术只能检测管道中较明显的宏观缺陷,而难以检测管道中由应力集中造成的微观损伤,因此无法避免由于应力集中引起的管道危害事故。管道弱磁应力内检测技术可以在非励磁条件下(地磁环境下),通过检测铁磁性材料在应力状态下的弱磁信号,来判断材料的应力变形和损伤状态,预判危害发生,弥补了传统管道内检测技术的不足,且具有设备轻便、无需专门磁化、快速便捷、灵敏度高等优点 。我公司对弱磁应力内检测技术进行了研究和工程应用,介绍如下。
激光熔覆技术作为一种先进的增材再制造技术,具有涂层与基体为冶金结合、能量集中、热影响区小、对基体损伤小、加工精度高等优点,能够实现复杂零部件的高效修复。在激光熔覆增材再制造过程中,再制造区域内形成的各种界面统称为再制造界面,该界面是再制造零部件的薄弱区域,为了使再制造零部件的性能达到甚至超过新品的性能,对该界面的缺陷进行分析是非常必要的。
量子传感器是一类能够精确测量诸如电磁场、频率、温度和压力等物理量的系统。固态材料中的自旋缺陷是量子信息技术和传感应用的有力候选系统。固态量子传感器通常使用固体材料中的类原子系统,利用其离散能级可以被相干地操纵和读取这一特性,以揭示由环境微小变化引起的能级分离位移,实现高灵敏度量子传感。
钛合金铸件具有高强度,在航空航天领域应用越来越多。钛合金铸件主要有气孔、夹杂物、疏松、缩孔、裂纹、流痕和冷隔等铸造缺陷及焊补产生的焊接缺陷。经过热等静压处理可消除大部分未与外界相通的疏松和缩孔类缺陷[2]。内部质量检测主要采用射线检测方法。通常经过射线检测达到质量控制要求后,才可以进行下一个工序,夹杂物类缺陷是检测的重点和难点。
木材改性技术是木材提质增效的主要手段。改性剂筛选、改性工艺优化以及改性机理解析等都离不开先进的表征分析技术。光谱成像技术将光谱分析技术与显微成像技术相结合,能够精确表征样品物理化学结构,甚至微观性能,已成为木材改性研究的重要工具。针对近年来光谱成像技术在木材改性研究领域的应用现状,本文主要从红外光谱成像、拉曼光谱成像和激光共聚焦显微成像技术等方面进行了综述,并对此类技术在木材改性研究领域的应用前景进行了展望。
通过考察聚酯配方中的二元醇单体的作用,研究酸解剂对涂层性能的影响,并在聚酯中加入特殊搭配的光稳定剂,合成得到了适用于制备轻烷基酰胺(HAA)体系低温固化干混消光粉末涂料的低酸值聚酯树脂。 同时研究了粉末涂料的固化反应,结果表明:该粉末涂料具有较低的活化能,制备涂层可以实现160℃低温固化,消光光泽约为28,涂层具有良好的耐冲击性和耐老化性能,综合性能优异。
TGIC学名为三(2,3一环氧丙烷)一均三嗪一2,4,6(1H,3H,5H)三酮,化学名为异氰脲酸三缩水甘油酯,化学结构式见图1。TGIC的熔融温度120℃,黏度(120℃)0.058~0.065 Pa·s,环氧当量102 109 g/当量,热和光稳定性及耐候性优良,与聚酯树脂有很好的相容性,固化产物的机械性能和电性能好,透明度高。
开发了适用于羟烷基酰胺(Primid)固化干混消光粉末涂料用的高、低酸值聚酯树脂。研究了高、低酸值聚酯树脂制备成粉末涂料之后烘烤形成的涂层和按质量比50∶50干混后烘烤形成的涂层的机械性能、耐水煮性和耐热性。 结果表明:该Primid固化体系干混光泽可以达到25~35,表面流平性和细腻度佳,机械性能和耐水煮性能优异,可以部分替换异氰脲酸三缩水甘油酯(TGIC)固化型粉末涂料。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
PID是比例(Proportional)、积分(Integral)、微分(Differential)的缩写PID是一种闭环控制算法,它动态改变施加到被控对象的输出值(Out),使得被控对象某一物理量的实际值(Actual),能够快速、准确、稳定地跟踪到指定的目标值(Target)PID是一种基于误差(Error)调控的算法,其中规定:误差=目标值-实际值PID的任务是使误差始终为0PID对被控对象模型要求低,无需建模,即使被控对象内部运作规律不明确PID也能进行调控
紧接上文,我们讲的是连续形式的PID公式,但连续形式的PID需要用模拟电路来实现,对于单片机而言,我们需要离散形式的PID,本节我们就来看看离散型PID的具体实现:
卡尔曼滤波我计划分为两部分,卡尔曼滤波(一)基础篇;算法篇——卡尔曼滤波(二)进阶,算法篇——卡尔曼滤波(三)实战
算法篇——常用的十大滤波算法
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南