智能流体计算公众号专注于将AI技术与计算流体力学(CFD)结合,分享前沿研究成果与实用案例。涵盖PINNs、深度学习等智能计算技术在流体力学中的应用,助力提高模拟效率与精度,适合科研人员及工程师探索智能流体计算的新方法。
本研究基于POD(Proper Orthogonal Decomposition,正交分解)方法,聚焦于建立一个降阶模型(Reduced-order Model, ROM),用于预测围绕静止物体的非定常流动,同时允许将物体几何形状作为参数进行变换。传统的POD方法仅适用于所有快照数据在同一计算网格下采样的情况。本研究提出了一种新型POD方法,该方法可以处理包含不同物体形状的流场快照数据,并且这些快照是通过不同计算网格数值模拟获得的。提出的POD方法引入了将流场数据映射到计算空间中的概念,从而在计算空间中得到最小化物理空间中重构误差的最佳POD基函数。该POD方法被应用于通过保角映射(conformal mapping)将椭圆形流场变换为圆柱形的实验中。基于提出的POD基函数,成功重构了具有不同长宽比的椭圆及不同形状翼型周围的流场。通过所提出的POD基函数得到的ROM,可以稳定地预测不在原快照数据中的物体流场的时间演化行为。在ROM中,POD快照中的流场频率与重构流场的频率之间的差异导致了相位误差,这归因于时间演化。然而,通过ROM获得的流场与直接求解Navier–Stokes(纳维–斯托克斯)方程得到的流场之间的均方误差小于。此外,重构的流场中包含与卡门涡街后方涡量频率一致的流动特征。基于上述观察结果,本研究提出的POD方法适用于通过降阶模型(ROM)重构围绕不同几何形状的流场。
深度学习研究中的一个新兴趋势是图神经网络(GNNs)在基于网格的连续介质力学模拟中的应用。这些学习框架大多作用于图上,其中每条边连接两个节点。受有限元方法中数据连接性的启发,我们提出了一种通过元素而非边连接节点来构建超图的方法。在这种超图上定义了一种超图消息传递网络,该网络模拟了局部刚度矩阵的计算过程。我们将这种方法称为基于有限元启发的超图神经网络,简称为FEIH()-GNN。我们进一步为所提出的网络配备了旋转等变性能力,并探索其在非稳态流体流动系统建模中的潜力。网络的有效性在两个常见的基准问题上得到了验证,即圆柱和翼型的流体流动配置。在插值雷诺数范围内,使用-GNN框架可以获得稳定且准确的时间滚动预测。该网络还能够向更高雷诺数域外进行外推,这超出了训练范围。
在当前的工业过程中,多种模式无处不在,不同模式中包含的历史数据量可能会有很大差异。在为特定模式构建故障检测模型时,数据不足很容易导致冷启动问题。为了解决这个问题,在考虑多种模式之间的相似性和差异性的同时,提出了一种基于特征分离的域自适应深度模型,用于少样本的非线性过程监测。该模型从模式中提取共同特征,并通过将领域知识从源转移到共同特征来弥补数据不足。另一方面,为了避免只关注共同特征而丢失有用信息,该模型还提取了目标域的特定特征。因此,在考虑目标域的特定特征的同时,借助域自适应提高了监测性能。此外,设计了三个检测指标,分别监测公共特征子空间、特定特征子空间和残差子空间。这样做的好处是,当故障发生时,可以获得更多的诊断信息。通过数值例子和实际工业加氢过程对提出的方法进行了测试,以验证检测的有效性。 关键词:故障检测、域自适应、通用功能、特定功能
自GPT采用Transformer架构取得成功以来,经典Transformer架构一直是很多大模型的标配。但这不意味着Transformer是完美无缺的。DeepSeek在Transformer架构的基础上也做了很多创新,主要为:多头潜在注意力即MLA 。
一句话:大模型界的拼夕夕,模型本身确实也有创新点,比如MLA、纯RL预训练、FP8混合精度,但更重要的是让我们看到了开源对闭源的生态挑战、中国对美国主导的有效追赶、极致工程优化的显著受益。
能源互联网可理解是综合运用先进的电力电子技术,信息技术和智能管理技术,将大量由分布式能量采集装置,分布式能量储存装置和各种类型负载构成的新型电力网络、石油网络、天然气网络等能源节点互联起来,以实现能量双向流动的能量对等交换与共享网络。
南方电网人工智能科技有限公司专家戴珍博士作了题为“调度运行领域电力人工智能应用”的主旨报告,征得戴博士同意,特与您分享。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南