制造业和加工业每年损失约200亿至600亿美元,由于计划外停机时间和不良的资产质量所导致。大多数组织都充分意识到这一点,并表示提高正常运行时间是他们实施预测性维护计划的主要目标。
本文主要研究风力涡轮机叶片结冰检测(ID)的数据驱动方法。鉴于传感器技术在风力涡轮机中的广泛应用,这种数据驱动的ID方法变得越来越突出。然而,目前的方法存在不足,特别是在确认多元传感器数据的结构特性和区分结冰阶段方面,这两个方面对识别故障模式都至关重要。为了弥补这些差距,我们提出了一种用于刀片ID的时空注意力孪生网络(SN)。该模型采用孪生网络架构,在类不平衡的情况下进行高效的少镜头学习。它独特地结合了图注意力网络和门控递归单元,用于从传感器数据中提取时空特征。这种设计不仅承认了数据的空间结构,而且清楚地识别了与各种结冰阶段相关的特征。使用来自监控和数据采集系统的实际传感器数据验证了STASN的功效。结果证明了SN识别不同结冰阶段特征的能力及其在早期结冰预测中的潜力。这项研究强调了SN在为叶片结冰提供先进、灵活的故障警报方面的实用性,代表了风力涡轮机维护和安全方面的重大进步。
本文提出了分析社会信息处理的π模型理论,在此基础上研究并提出数字电网理论模型。 本文提炼出数字电网的4个主要特征,构建了以物理系统、信息系统、业务系统为主的数字电网总体架构,为数字电网的研究和发展奠定了坚实基础。
易用性:低技术门槛,是平台快速推广应用的关键 通用性:业务场景通用适配,不重复造轮子 可视化:风控处理链路长且复杂,让运行状态可视化很重要 实时安全攻防:快感知-快识别-快止损,尽可能缩短黑产攻击时间 一切都围绕着数据:数据是风控的弹药,数据标准化,数据运营比数据建设更难 模型不是万能的:策略与模型相互辅助,白猫黑猫,抓到老鼠就是好猫
阿里巴巴,java,开发,手册,v1.1.0,版,册数
针对变压器故障特征选择困难和诊断模型准确率较低的问题,提出一种混合式故障特征选择方法,并利用改进北方苍鹰优化算法(improved northern goshawk optimization algorithm,INGO)优化深度混合核极限学习机(deep hybrid kernel limit learning machine,DHKELM)实现变压器故障诊断。首先,基于相关比值法构建24维变压器故障特征集,从线性相关和非线性相关的角度出发,采用Pearson相关系数和互信息法,筛除相关性较低的特征。其次,引入Logistic混沌映射、随机反向学习和自适应t分布变异改进NGO算法,提升其寻优性能。然后,利用INGO算法对保留特征进行二次筛选,获得最优输入特征。最后,将极限学习机自动编码器引入混合核极限学习机中,建立DHKELM诊断模型,利用INGO对DHKELM模型初始参数进行优化,完成INGO-DHKELM变压器故障诊断模型的构建。实验表明,与常规特征选择方法相比,利用混合式故障特征选择方法所选择的输入特征进行故障诊断能够有效提升诊断准确率;相较于其他优化型诊断模型,INGO-DHKELM具有更高的准确率和更好的稳定性。
作为智能对话系统,ChatGPT最近两天爆火,都火出技术圈了,网上到处都在转ChatGPT相关的内容和测试例子,效果确实很震撼。我记得上一次能引起如此轰动的AI技术,NLP领域是GPT 3发布,那都是两年半前的事了,当时人工智能如日中天如火如荼的红火日子,今天看来恍如隔世;多模态领域则是以DaLL E2、Stable Diffusion为代表的Diffusion Model,这是最近大半年火起来的AIGC模型;而今天,AI的星火传递到了ChatGPT手上,它毫无疑问也属于AIGC范畴。所以说,在AI泡沫破裂后处于低谷期的今天,AIGC确实是给AI续命的良药,当然我们更期待估计很快会发布的GPT 4,愿OpenAI能继续撑起局面,给行业带来一丝暖意。
在本文中,我们提出了一种可解释的连续帧工作(ETN-ODE),用于多变量时间序列的任意步长预测。所提出的ETN-ODE利用ODE网络输出任意预测值。我们设计了一个TGRU来处理多变量时间序列,该时间序列表示网络中学习的参数较少的单个输入特征的不同动态。串联注意力被设计为向ODE网络生成更自适应的输入,通过可视化时间和变量贡献来提供可解释性。在四个真实世界数据集上进行的任意步骤预测和标准多步骤预测的各种实验证明了我们模型的有效性。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)全球数字治理蓝皮书(2025)
当前,人类正处在新一轮科技革命和产业变革的历史关口,人工智能正以前所未有的速度重塑世界,为千行万业注入新动能。从工业制造的智能产线到农业生产的精准种植,从金融服务的智能风控到医疗健康的远程诊断,人工智能推动着生产效率的跃升与产业形态的迭代。正如《指南》所展望的那样,未来,随着网络通信、前沿算法、存储算力等多元技术的深度融合,以及海量数据与前沿知识的双重加持,人工智能将彻底突破单一技术工具的局限,蜕变为贯穿千行万业生产链条的关键枢纽,融入千家万户的日常起居,成为人类社会高效运转不可或缺的底层支撑。
新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案
零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南