【IEEEKDE】任意步长时间序列预测的可解释张量神经常微分方程

在本文中,我们提出了一种可解释的连续帧工作(ETN-ODE),用于多变量时间序列的任意步长预测。所提出的ETN-ODE利用ODE网络输出任意预测值。我们设计了一个TGRU来处理多变量时间序列,该时间序列表示网络中学习的参数较少的单个输入特征的不同动态。串联注意力被设计为向ODE网络生成更自适应的输入,通过可视化时间和变量贡献来提供可解释性。在四个真实世界数据集上进行的任意步骤预测和标准多步骤预测的各种实验证明了我们模型的有效性。

  • 2024-05-11
  • 收藏0
  • 阅读119

方案详情

评价

评分 :
   *