• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

炼化企业以预知维修为导向的设备完整性管

中国石化武汉分公司 创造性提出了以预知维修为导向的设备完整性管理体系三维实践架构,发明预知 维修技术工具成功应用,设备管理业务全流程数字化处理,建立设备关键绩效指标体系,配套完成 “专业管理+区域协同”两级矩阵组织架构改革,有效植入设备完整性管理信息平台。

  • 2024-11-19
  • 阅读225

面向未来网络的数字孪生城市场景应用白皮书

数字孪生城市是在数字空间对物理城市进行复刻、精准映射、实时交互的数字城市,通过数字建模、感知连接、智能分析等技术,洞察物理城市运行状态,仿真推演运行趋势,形成智能交互决策,反馈于物理城市,实现对物理城市的持续优化和迭代升级。自 2017 年“数字孪生城市”建设理念被首次提出以来,在国家部委政策驱动下,数字孪生城市相关技术逐渐成熟,全国多地加快数字孪生应用场景创新实践,在文旅、城市治理和网络等热点领域形成大量优秀案例,市场规模持续增长,应用效能不断增强。

  • 2024-11-22
  • 阅读679

基于图多任务学习的潮流分析模型

针对现有基于深度学习的潮流计算方法均基于回归模型,不具有潮流判敛功能对输入的潮流不收敛样本仍映射出虚假系统潮流分布问题,提出一种适用于潮流分析的多任务学习模型,同时具备潮流判敛及潮流分布计算功能。

  • 2024-11-22
  • 阅读304

面向时变转速下旋转机械智能故障诊断的半监督元路径空间扩展图卷积网络

在实际工程场景中,机械设备的运行速度错综复杂且多变。然而,现有的智能故障诊断研究大多是在恒定转速条件下进行的,针对时变转速条件下的故障诊断研究较少。此外,有标签数据的有限性为智能故障诊断方法带来了相当大的障碍。因此,本文提出了一种半监督元路径空间扩展图神经网络( ME-GNN ),用于时变转速和有限标记样本情况下的故障诊断。首先,提出了一种新颖的异构图,将振动数据、故障信息和变转速信息之间的最近邻关系转换为一个图。这种图不仅集成了多样化的物理信息,而且有利于异构数据类型之间的消息传递和聚合。为了从不同的特征空间中获取异构图的特征信息,实现了元路径空间扩展图卷积网络来聚合来自不同属性节点的信息。最后,所设计的特征融合模块有效融合了节点特征和拓扑信息,从而进一步扩展了特征空间,增强了模型的诊断能力。一系列对比实验验证了所提方法优于现有的故障诊断方法。

  • 2024-11-26
  • 阅读378

【IEEETII】一种使用增量样本进行机械剩余使用寿命预测的互补连续学习框架

连续学习最近在机器剩余使用寿命(RUL)预测中受到了特别关注,它使深度预测网络能够使用增量样本来逐步提高网络性能,而无需费力的再训练。然而,目前的研究显示出几个局限性:1)在多个连续学习阶段后,缺乏一种明确的机制来防止象牙记忆的丧失。2)基于连续学习的RUL预测缺乏采样增强重放技术。为了解决上述局限性,本文提出了一种用于机器RUL预测的互补连续学习框架,该框架包含两个新特征,即长期增强和联想重放。这两个特征是互补和共同增强的。长期增强侧重于多阶段连续学习,这能够防止深度prognos.tics网络忘记以前学习到的退化知识。关联回放关注每个新的持续学习阶段,能够将典型的退化知识整合到新的网络学习中。使用滚动轴承的运行到故障数据集验证了提出的框架,并将其与一些最先进的方法进行了比较。实验结果表明,所提出的框架在持续学习过程中具有较低的遗忘率,并实现了更好的预测性能强化 关键词:关联回放、持续学习、深度学习、长期增强、剩余使用寿命预测。

  • 2024-11-26
  • 阅读277

【能源/化工】设备评级标准

【能源 / 化工】设备评级标准

  • 2025-02-04
  • 阅读208

谢惠藩高工:昆柳龙特高压混合多端直流阀控触发异常分析及优化措施

昆柳龙特高压混合多端直流工程是世界首个特高压混合多端直流工程,较传统两端直流运行方式更加灵活,但也增加了控制保护策略的复杂性。自投运以来多次发生运行异常,其“首台套”控制保护系统和设备的可靠性有待进一步提升。详细分析了昆柳龙直流“6·9”阀控触发异常事件,全面梳理控制保护功能配置和直流响应情况,提出了增加阀组触发异常检测保护功能并实施应用,该策略能准确迅速检测出阀控脉冲丢失或脉冲延时故障,完善了直流控制保护系统对阀组触发异常工况的风险识别和抵御能力,有效提升昆柳龙特高压多端混合直流工程运行的可靠性和稳定性,研究成果可为后续特高压混合多端直流工程控制保护系统的功能设计提供借鉴和指导。

  • 2024-10-16
  • 阅读214

准备知识——傅里叶变换

到目前为止,我们一直看到的是时域中的振动,这些振动是直接从机器捕获的信号。如前所述,这些信号包含有关每个机器组件行为的所有信息。然而,在进行故障诊断时存在一个问题:这些信号以非常复杂的形式加载了大量信息,包括每个单独机器组件的特征信号,因此几乎不可能用肉眼区分其特征行为。

  • 2025-02-04
  • 阅读188
上一页 1 …… 28542855285628572858285928602861286228632864 …… 2876 下一页 共 23002 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读63
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读60
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读72
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读117
  • 下载4

最新上线

中服云工业物联平台火山地震监测解决方案

中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求

  • 阅读25
  • 下载0

新一代人工智能发展规划__2017年第22号国务院公报_中国政府网

人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划

  • 阅读31
  • 下载0

卫生健康行业人工智能应用场景参考指引

:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。

  • 阅读48
  • 下载1

生成式人工智能服务管理暂行办法__2023年第24号国务院公报_中国政府网

 为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划

  • 阅读34
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南