• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

IEEETII一种可解释的增量随机权重神经网络构造算法及其应用

本文旨在为增量随机权重神经网络(IRWNN)提供一种可解释的学习范式。IRWNNs因其易于部署和快速学习速度而成为神经网络算法的热门研究方向。然而,现有的IRWNN难以解释隐藏节点(参数)如何影响网络残差的收敛。为了解决这一差距,本文提出了一种可解释的构造算法(lCA)。具体来说,我们首先对网络构建过程进行空间几何分析,建立网络残差和隐藏参数之间的空间几何关系,以可视化隐藏参数对网络残差收敛的影响。其次,基于空间几何关系和节点池策略,建立了一种具有空间几何信息的可解释控制策略,以获得有助于网络残差收敛的隐藏参数。此外,为了便于lCA处理大数据的复杂任务,本文提出了一种低复杂度的轻量级ICA,即ICA+。最后,从理论上证明了本文提出的ICA和ICA+具有普遍的逼近性质。在两个真实世界数据集和七个基准数据集上的实验结果表明,所提出的ICA和ICA+在快速学习、良好泛化和网络结构紧凑性方面具有优势。关键词:数据建模、可解释构造算法、神经网络(NN)、随机算法、空间几何信息。

  • 2024-12-16
  • 阅读332

自动驾驶算法——理解强化学习(五)

首先回顾这个系列前几篇文章:自动驾驶算法——理解强化学习(一) 和 自动驾驶算法——理解强化学习(二)和自动驾驶算法——理解强化学习(三)和自动驾驶算法——理解强化学习(四)。

  • 2024-12-19
  • 阅读207

自动驾驶算法——理解强化学习(四)

首先回顾这个系列前几篇文章:自动驾驶算法——理解强化学习(一) 和 自动驾驶算法——理解强化学习(二)和自动驾驶算法——理解强化学习(三)。

  • 2024-12-19
  • 阅读199

自动驾驶算法——理解强化学习(一)

强化学习位于多个领域的交叉点,但其基本理念相同:决策科学。在计算机科学中,它是机器学习;在神经科学中,它是奖励系统。在工程学中,它是最优控制。

  • 2024-12-18
  • 阅读222

《智慧水务白皮书》-优锘

数字孪生智慧水务以可视化为特色、以数字孪生为理念、以物联网为基础,“可视”+“数据”双核驱动,构建数字孪生智慧水务监测管理平台。以管理数据为核心,业务 为纽带,打通水系、供排水管网、水污染源、视频监控等数字化对象与业务的全连接,实现数据全融合、状态全可视、业务全可管、事件全可控,使得河流管理更安全、水资源利用更高效、持续、卓越的运营。

  • 2024-11-13
  • 阅读373
  • 下载0
  • 16页
  • pdf

用于非线性工业过程故障检测的尖峰自动编码器

近年来,人工神经网络因其构建具有不同程度非线性的灵活模型和有效处理大规模数据的卓越能力,在冶金、化工和机械制造业的过程监测中得到了成功的应用。然而,由于神经网络训练和初始化的高昂成本,该模型的独特性降低,导致故障检测性能更加波动。为了缓解这个问题,并受到生物神经元发射尖峰以传输信息的方式的启发,尖峰神经元被用于构建尖峰神经网络,将参数优化从传统的全局参数调整转变为两阶段分层过程。基于此,构建了类abrain离散模型的脉冲自动编码器(SNNAE)。通过数值算例,首先将SNNAE的训练过程与具有相同结构的人工神经网络的训练过程进行了比较,结果表明SNNAE在处理高度非线性数据方面具有更高的效率和精度。为了衡量其在故障检测中的有效性,然后通过相同的数值例子和三相流过程将SNNAE与最先进的方法进行比较,表明其能够显著提高非线性过程中的过程监测性能,同时显著降低其波动。关键词:人工神经网络、尖峰神经网络、故障检测、非线性过程、性能波动

  • 2024-10-04
  • 阅读909

【EAAI】基于大规模多模工业数据的异常检测:非平稳核与自编码器的融合方法

核方法和神经网络是两种主流的非线性数据建模方法,已被广泛应用于工业过程监测。然而,它们都存在不完美的性质,因此相关应用受到限制。一方面,内核的可重构性、可扩展性和对超参数的鲁棒性不强,导致它们在大规模数据建模和监控中的性能下降。另一方面,排序为参数初始化的神经网络的高维参数空间存在严重的异常检测性能不一致,这使得行业对使用神经网络持谨慎态度。受这些事实的启发,我们提出将核和神经网络集成在一起,形成一种可扩展、可重构和性能一致的新模型结构。具体来说,通过(1)从训练集中选择关键边缘和内部数据作为隐藏层径向基函数的中心,以及(2)在训练过程中自适应调整核宽度,提出了一种基于自编码器的非平稳模式选择核(AE-NPSK)。此外,新的神经网络具有很强的性能一致性,这有助于搜索最优参数。最后,我们在具有挑战性的多模工艺上测试了所提出方法的性能。结果验证了所提出方法的有效性。关键词:核方法、人工神经网络、过程监测、多模式过程、自动编码器、径向基函数

  • 2024-10-04
  • 阅读1146

【JPC】用于动态过程监测的重排序短期自相关驱动远程判别卷积自编码器

由于现代复杂工业过程中的非线性、动力学和局部特性,深度神经网络(DNN)可能会导致次优的监测性能。为了克服这些局限性,本文首先提出了一种新的数据构造方法,将短期自相关和空间相关性建模为三维矩阵,然后对其元素进行重新排序,以更好地编码局部和时间结构。随后,我们基于自注意机制设计了一种称为远程判别注意(LDA)的新结构,以扩大原始卷积神经网络(CNN)的接受范围,从而提取全局特征。最后,我们提出了一种基于LDA的远程判别注意自编码器(LDCA)监测模型,从构建的矩阵中提取远程和局部变量之间的结构特征。通过数值例子和三相流过程验证了该方法在故障检测中的有效性。

  • 2024-10-04
  • 阅读953
上一页 1 …… 28132814281528162817281828192820282128222823 …… 2876 下一页 共 23002 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读99
  • 下载1

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读87
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读98
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读139
  • 下载4

最新上线

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读55
  • 下载0

2025全球人工智能展望报告

2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。

  • 阅读12
  • 下载0

算力是人工智能的基础设施

机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。

  • 阅读25
  • 下载0

2026六大未来产业发展趋势与人工智能八大落地场景洞察

2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力

  • 阅读25
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南