电力大数据时代的来临,使得基于人工智能、云计算、物联网的技术在电力行业之中得到了广泛的应用。而对于各个行业的创新与发展而言,知识图谱技术成为全新动力,针对电力领域知识图谱方面的研究却很少。本文聚焦在电力行业,以整合行业内知识资源为目标构建知识图谱,提供了场景化专业知识搜索、精准知识推送、决策支持等形态的知识应用,服务于该行业内的从业人员、企业机构及行业决策者。本文将分享知识图谱在电力行业应用上的一些探索和实践。
本文分享主题为数仓Onedata体系建设的方法论。主要内容包括: 全文目录: 1. 方法论体系 2. 数据建模流程工艺 3. 实践案例 4. 心得总结
地铁屏蔽门系统对于我国大多数人来说还是很陌生的,本文以广州地铁为例,阐述了地铁屏蔽门控制系统的构成和功能,并对现场总线技术在其系统中的应用及屏蔽门系统与其他相关专业接口问题做了简明扼要的介绍。
针对三相异步电机匝间短路故障在不同工况下数据分布不一致带来的泛化识别准确率下降的问题,提出了一种基于残差-自注意力网络的迁移学习方法,通过在残差网络中嵌入自注意力机制实现特征强化并利用源域数据进行模型训练,然后利用迁移学习的微调策略使得模型能更好地适应目标域的特征分布,以此来增加模型在目标域数据中的适应性能力。
最近,基于深度学习的模型,如transformer,由于其强大的表示能力,在工业剩余使用寿命(RUL)预测方面取得了显著的性能。在许多工业实践中,RUL预测算法被部署在边缘设备上进行实时响应。然而,深度学习模型的高计算成本使其难以满足边缘智能的要求。本文提出了一种具有多层次时间序列缩减的轻量级组Transformer(GTMRNet)来缓解这个问题。与计算所有时间序列的大多数现有RUL方法不同,GT MRNet可以自适应地选择必要的时间步长来计算RUL。首先,构建了一个轻量级的组Transformer,通过使用具有显著小波参数的组线性变换来提取特征。然后,提出了一种时间序列缩减策略,以自适应地过滤掉每一层不重要的时间步长。最后,开发了一种多层次学习机制,以进一步稳定时间序列缩减的性能。在真实世界条件数据集上的广泛实验结果表明,所提出的方法可以在不牺牲精度的情况下显著减少高达74.7%的参数和91.8%的计算成本
基于模型预测控制的牵引电机高鲁棒性故障诊断技术
主要针对安全隐患排查过程中出现的非结构化文本数据 采用大数据分析中的文本挖掘与可视化方法,对矿山安全隐患数据 进行知识发现 以问题为导向,进行大数据分析,以挖掘安全隐患中的隐藏知识
以生产执行系统为主线,协同作业平台为基础 ,通过配 置角色和用户的权限,控制不 同用户使用六大平台的权限。 是用户日常操作的纽带型 系统平台,登录系统后,根据 个人首页中的通知公告、待办 提示信息和告警预警信息等, 在该平台中或启动对应的其他 系统平台处理采矿业务和流程 业务等。
没有账户,需要注册
包括集团管控系统、工厂系统、开发发布系统、运维管理系统、网关系统5大子系统,旨在实现集团内部多工厂、多部门之间的协同管理和数据共享。通过构建一体化的工业物联网平台,整合各工厂的生产、设备数据和资源,打造集团统一的工业操作系统底座,为集团提供统一的管理视角和决策依据,提升集团整体运营效率和协同效应
清华之后,北大也不甘示弱,推出了DeepSeek教程。清华的教程是传媒学院出的,而北大的这份文件是人工智能学院和计算机学院出的,所以总体上内容更加专业、全面和深入,尤其还提到了AI时代工作和技能需求的变化,可以说是不可多得的优质资料。
成都市作为中国国家中心城市,秉承“创新、协调、绿色、开放、 共享”理念,运用 CIM 平台+免接口数据集成技术,打造城市大脑, 推行网络理政。通过接入市、区(市)县两级部门信息系统,融合政 府、企业和社会数据,以网络理政为城市大脑中枢,构建能在线监测、 能分析预测、能应急指挥的智能城市治理运行体系,提升城市治理能 力。
本书在实践积累与行业洞察基础上,试图对一系列关键问题做出解答:工业大模型与通用大模型有何不同?工业大模型的技术体系与关键技术何在?工业大模型赋能的重点领域和主要场景包括哪些?我国和全球工业大模型的产业生态如何?
虽然本文方法实现了锂离子电池在无温度传感器条件下的温度预测,但实际应用中可能存在的复杂工况条件,如不同环境温度、充放电倍率情况下的电池温度预测问题还缺乏深入的讨论,未来的工作将致力于更为复杂情况下的研究。
电力系统灵活调节能力充裕度研究在新型电力系统建设过程中有着重要地位,为了研究这一问题,本文建立了基于形态学分解的电力系统灵活调节能力充裕度分析模型。通过使用某地区实际电力系统运行数据进行仿真验证,可以得到以下结论。
国内智能化安全运营正处在一个充满机遇和挑战的关键发展阶段。A 技术的深度赋能、自动化水平的持续提升、数据驱动理念的深化、应用场景的不断扩展、人机协同模式的探索、云化与 Saas 化的加速、量化管理的普及以及生态合作的深化,共同勾勒出IS0C未来的发展蓝图。企业应积极拥抱这些趋势,克服挑战,构建面向未来的智能化安全运营体系,以应对日益复杂的网络安全威胁,保障数字化转型的顺利进行。
英伟达(NVIDIA)自1993年创立以来,以技术前瞻性和生态构建能力重塑计算产业格局。经历1999年纳斯达克上市奠定资本基础后,公司在2006年推出革命性的CUDA并行计算架构,突破性地将GPU应用边界从图形渲染拓展至高性能计算领域,为后续人工智能革命埋下关键伏笔
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南