最近,基于深度学习(DL)的工业应用由于其先进的性能而引起了广泛的关注。然而,便携式设备中有限的计算资源总是使大型DL模型在行业中不适用。基于DL的单图像超分辨率由于计算量大,也遇到了这个问题。此外,大多数基于轻量级卷积神经网络的方法没有充分利用特征,这限制了它们进行工业重构的能力。为了缓解这个问题,我们提出了一个渐进交互学习网络(PILN)来细化不同层次的特征:在全局层面,我们采用渐进交互学习策略来整合时间和空间维度的层次特征;在中介层面,强化互动学习单元,采用强化互动学习,显著提升重建绩效;在局部层面上,采用逐像素学习的方法,提取残差单元,通过权重分布来搜索最优信息流。大量实验表明,PILN优于其他最先进的方法。
现代工业过程控制存在多变量、多约束多目标、强非线性等问题。模型预测控制(MPC)是一种有效的解决方案,在工业过程中得到了广泛的应用。然而,MPC的一个局限性是需要足够的数据来建立准确的预测模型。为此,本文提出了一种基于知识的神经网络MPC解决方案。首先,提出了一种基于稀疏表示的Hammerstein系统结构知识提取方法,该方法能够从少量的系统操作数据中提取系统结构知识。然后,设计了一个知识知情的神经网络模型,将系统结构知识相结合,构建了一个具有特殊结构的神经网络,从而克服了模型训练中数据不足的问题。最后,将知识告知的神经网络模型嵌入MPC框架中,可以在保证预测性能的同时降低轧制优化的计算成本。通过数值模拟和pH中和过程实验验证了该方法的可行性和有效性。
非侵入式负载监测实现了对设备级能耗的态势感知,而无需安装特定于设备的传感器。它已经研究了30多年,深度学习方法是最先进的解决方案。然而,目前的工作主要集中在住宅场景上,从电器类型的角度来看,工业负荷分解是一个更具挑战性的问题,研究较少。然而,工业负荷在节能以及减缓和适应气候变化方面发挥着重要作用。因此,本文重点研究了工业非侵入性负荷监测问题,并提出了一种基于物理信息的时间感知神经网络方法。本文考虑了工业负荷的多个特征,并利用它们之间的物理关系来显式地改进学习过程。此外,还提出了一种二维卷积层来对时间戳进行编码以进行特征增强。对10台电器的真实工业数据进行实验将验证所提出方法的有效性。
由于工业过程单元的反应机理复杂,工业过程变量之间存在因果关系和相关性。因果发现算法已被用于发现变量关系的知识,并指导过程建模和控制优化。然而,它们大多受到严格假设的限制,如线性关系、加性噪声、稳态过程等。因此,这些方法不能在大多数实际工业过程中获得良好的性能。为了解决这些问题,本文提出了一种新的用于工业因果图发现的权重比较因果挖掘算法。它首先用过程数据训练一组隐层神经网络,然后根据网络权重的比较挖掘过程变量的无向骨架,进一步确定骨架中无向边的因果方向,得到有向因果图。通过尿素合成过程的基准测试和实际工业案例验证了WCCM的有效性。WCCM挖掘的无向边和直边与地面实况具有很高的一致性。此外,WCCM的因果发现结果被用于指导软传感器建模的特征选择,从而提高了预测精度和模型的可解释性。
南方电网科学研究院有限责任公司蔡希鹏院长作了题为“海上风电大规模并网送出新技术”的主旨报告。征得蔡院长同意,特与您分享!
使用神经网络技术的软测量已经越来越多地应用于工业过程。近年来,基于神经网络的软传感器的安全性和鲁棒性成为人们关注的主要问题。此外,目前的研究表明,神经网络容易受到对抗性攻击。换句话说,施加在输入上的小扰动可能导致输出的显著偏差。如果关键过程变量的软传感器受到攻击,可能会对工业过程造成相当大的损害。本文主要研究基于神经网络的工业软传感器的攻击方法。针对工业软传感器的特点,本文提出了两种新的对抗性攻击方法。第一种方法称为镜像输出攻击(MOA),是一种微妙的攻击方法,它翻转输出曲线以改变输出的方向。第二种方法称为翻译MOA(TMOA),很容易使运算符操作失误。TMOA在翻转输出曲线的同时平移输出曲线,以达到改变输出条件的目的。在硫回收装置工艺的工业案例研究中证明了MOA和TMOA的有效性。仿真结果表明,两种对抗性攻击方法都可以对基于神经网络的工业软传感器进行攻击。对抗性攻击方法的研究可以为防御攻击提供基础,从而增强软传感器的安全性和鲁棒性。
工学博士,担任《Mechanical System and Signal Processing》《中国电机工程学报》《控制与决策》等期刊审稿专家,擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
本次分享是由湖南大学黄守道教授的报告,“大型风力发电机组健康管理技术”。该PPT分享仅做知识传播用途,如有侵权请后台联系小编删除。
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
中服云能源管理系统旨在帮助企业、机构和园区等实现能源使用的高效管理和优化。基于中服云物联网平台打造的开放式能源管理平台,支持对企业能源数据采集及监控,随时远程控制能源浪费,调节尖峰平谷的用能策略,基于历史能耗数据对企业未来一定时间内的用能需求进行预测:根据企业生产计划和能耗需求灵活调度能源至各个生产环节;些控能耗异常情况,使企业用能更经济合理、降低能耗开支。系统通过能耗数据可视化分析为企业提供能耗数字化决策依据,不断优化用能结构及能源利用率。
中服云智能楼宇管理系统CServer IBMS以三维仿真模型为载体,整合楼控各子系统,提供集园区安全管控、园区决策于一体的智能运维平台。支持从便捷通行、安防管理、设施管理、水电供应、智能照明、空调新风、能耗环境检测和故障预警等多维度日常运行监测与管理,满足设备异常自动预警、故障快速定位、远程巡检等智能运维需求,提升管理人员对园区安全防范、事件快速处置效率。
中服云物联网平台主要为开发者、使用者、管理员提供了设备工艺环境的数据采集能力、监控能力、数据存储能力、数据分析能力、数据可视化能力以及支持快速开发的低代码工具集,于一身的开发、配置、运行支撑的设备数智化基础设施。主要由数据采集与控制、设备诊断、报表工具、组态工具、数据模拟工具、数据批处理工具、劣化分析、DataV数据大屏、AI0X模型训练工具、流数据处理工具、自动化流程调度工具等功能组成。满足设备数智化对于物联网平台基础架构高性能、高可靠、可扩展、简单易用的需求,实现物理层和业务应用层的高度配合。为企业数字化转型提供必不可少的核心支撑平台,平台支持云架构两层部署和分布式三层部署。
中服云机加生产监控系统CServer MDC基干中服云物联网开发平台,实现机床设备监控、生产数据采集、生产过程管理、智能统计分析、设备运维管理等几大功能。用于安全生产、提高生产效率、设备利用率、产品质量、生产过程管理、数据自动统计分析、管理决策。解决材料浪费、能源浪费、产品自动计件、生产怠工、减少人工成本、质量控制、设备故障实时报警、设备诊断、订单排产、生产进度可视化等问题。解决老板、管理者、工人遇到的不同问题。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南