第11章 方差分析

我们已经作过两个总体均值的假设检验,如两台机床生产的零件尺寸是否相等,病 人和正常人的某个生理指标是否一样。如果把这类问题推广一下,要检验两个以上总体 的均值彼此是否相等,仍然用以前介绍的方法是很难做到的。而你在实际生产和生活中 可以举出许多这样的问题:从用几种不同工艺制成的灯泡中,各抽取了若干个测量其寿 命,要推断这几种工艺制成的灯泡寿命是否有显著差异;用几种化肥和几个小麦品种在 若干块试验田里种植小麦,要推断不同的化肥和品种对产量有无显著影响。 可以看到,为了使生产过程稳定,达到优质、高产,需要对影响产品质量的因素进 行分析,找出有显著影响的那些因素,除了从机理方面进行研究外,常常要作许多试验, 对结果作分析、比较,寻求规律。用数理统计分析试验结果、鉴别各因素对结果影响程 度的方法称为方差分析(Analysis Of Variance),记作 ANOVA。 人们关心的试验结果称为指标,试验中需要考察、可以控制的条件称为因素或因子, 因素所处的状态称为水平。上面提到的灯泡寿命问题是单因素试验,小麦产量问题是双 因素试验。处理这些试验结果的统计方法就称为单因素方差分析和双因素方差分析。 §1 单因素方差分析 只考虑一个因素 A 对所关心的指标的影响, A 取几个水平,在每个水平上作若干 个试验,试验过程中除 A 外其它影响指标的因素都保持不变(只有随机因素存在),我 们的任务是从试验结果推断,因素 A 对指标有无显著影响,即当 A 取不同水平时指标 有无显著差别。 A 取某个水平下的指标视为随机变量,判断 A 取不同水平时指标有无显著差别, 相当于检验若干总体的均值是否相等

  • 2021-10-31
  • 阅读245
  • 下载0
  • 13页
  • pdf

第23章 现代优化算法

现代优化算法是 80 年代初兴起的启发式算法。这些算法包括禁忌搜索(tabu search),模拟退火(simulated annealing),遗传算法(genetic algorithms),人工神经网 络(neural networks)。它们主要用于解决大量的实际应用问题。目前,这些算法在理论 和实际应用方面得到了较大的发展。无论这些算法是怎样产生的,它们有一个共同的目 标-求 NP-hard 组合优化问题的全局最优解。虽然有这些目标,但 NP-hard 理论限制它 们只能以启发式的算法去求解实际问题。 启发式算法包含的算法很多,例如解决复杂优化问题的蚁群算法(Ant Colony Algorithms)。有些启发式算法是根据实际问题而产生的,如解空间分解、解空间的限 制等;另一类算法是集成算法,这些算法是诸多启发式算法的合成。 现代优化算法解决组合优化问题,如 TSP(Traveling Salesman Problem)问题,QAP (Quadratic Assignment Problem)问题,JSP(Job-shop Scheduling Problem)问题等效 果很好。 §1 模拟退火算法 1.1 算法简介 模拟退火算法得益于材料的统计力学的研究成果。统计力学表明材料中粒子的不 同结构对应于粒子的不同能量水平。在高温条件下,粒子的能量较高,可以自由运动和 重新排列。在低温条件下,粒子能量较低。如果从高温开始,非常缓慢地降温(这个过 程被称为退火),粒子就可以在每个温度下达到热平衡。当系统完全被冷却时,最终形 成处于低能状态的晶体。 如果用粒子的能量定义材料的状态,Metropolis 算法用一个简单的数学模型描述了 退火过程。假设材料在状态i 之下的能量为 E(i) ,那么材料在温度T 时从状态i 进入状 态 j 就遵循如下规律: (1)如果 E( j) ≤ E(i) ,接受该状态被转换。 (2)如果 E( j) > E(i) ,则状态转换以如下概率被接

  • 2021-10-30
  • 阅读264
  • 下载0
  • 20页
  • pdf

第05章 图与网络

§1 概论 图论起源于 18 世纪。第一篇图论论文是瑞士数学家欧拉于 1736 年发表的“哥尼 斯堡的七座桥”。1847 年,克希霍夫为了给出电网络方程而引进了“树”的概念。1857 年,凯莱在计数烷CnH2n+2 的同分异构物时,也发现了“树”。哈密尔顿于 1859 年提 出“周游世界”游戏,用图论的术语,就是如何找出一个连通图中的生成圈、近几十年 来,由于计算机技术和科学的飞速发展,大大地促进了图论研究和应用,图论的理论和 方法已经渗透到物理、化学、通讯科学、建筑学、运筹学,生物遗传学、心理学、经济 学、社会学等学科中。 图论中所谓的“图”是指某类具体事物和这些事物之间的联系。如果我们用点表示 这些具体事物,用连接两点的线段(直的或曲的)表示两个事物的特定的联系,就得到 了描述这个“图”的几何形象。图论为任何一个包含了一种二元关系的离散系统提供了 一个数学模型,借助于图论的概念、理论和方法,可以对该模型求解。哥尼斯堡七桥问 题就是一个典型的例子。在哥尼斯堡有七座桥将普莱格尔河中的两个岛及岛与河岸联结 起来,问题是要从这四块陆地中的任何一块开始通过每一座桥正好一次,再回到起点。 图 1 哥尼斯堡七桥问题 当然可以通过试验去尝试解决这个问题,但该城居民的任何尝试均未成功。欧拉为了解 决这个问题,采用了建立数学模型的方法。他将每一块陆地用一个点来代替,将每一座 桥用连接相应两点的一条线来代替,从而得到一个有四个“点”,七条“线”的“图”。 问题成为从任一点出发一笔画出七条线再回到起点。欧拉考察了一般一笔画的结构特 点,给出了一笔画的一个判定法则:这个图是连通的,且每个点都与偶数线相关联,将 这个判定法则应用于七桥问题,得到了“不可能走通”的结果,不但彻底解决了这个问 题,而且开创了图论研究的先河。 图与网络是运筹学(Operations Research)中的一个经典和重要的分支,所研究的 问题涉及经济管理、工业工程、交通运输、计算机科学与信息技术、通讯与网络技术等 诸多领域。下面将要讨论的最短路问题、最大流问题、最小费用流问题和匹配问题等都 是图与网络的基本问题。 我们首先通过一些例子来了解网络优化问题。 例 1 最短路问题(SPP-shortest path problem) 一名货柜车司机奉命在最短的时间内将一车货物从甲地运往乙地。从甲地到乙地

  • 2021-10-31
  • 阅读226
  • 下载0
  • 50页
  • pdf