基于人工智能方法的数据库智能诊断

数据库是一种非常重要和基础的计算机系统软件,随着数据库在各行各业的广泛应用,越来越多的人开始关注数据库运行的稳定性.由于各种各样内部或是外部作用的影响,数据库在实际运行的过程中会出现性能异常,而这可能会带来巨大的经济损失.人们大多通过观察监控指标信息来进行数据库异常诊断,但是关于数据库监控指标有数百个,普通的数据库使用者根本无法提取出有价值的信息.一些传统的公司会聘用专业的人员管理数据库,而这种成本会是很多公司难以接受的.因此,如何用较低的成本完成对数据库的自动监控和诊断是具有挑战性的问题.现有的OLTP数据库自动异常诊断方法往往存在着监控信息收集成本过高、适用范围小抑或是稳定性较差等问题.提出了一种智能的数据库异常诊断框架AutoMonitor’提供了数据库异常监测、异常指标提取和根因分析这3个模块,这3个模块分别使用了基于LsTM的时间序列异常诊断模型、KolIIlogorov.smimov检验、和优化的K近邻算法.整个框架分成离线训练和在线诊断这两个阶段.将提出的系统部署在Post盯esQL数据库,通过实验表明该框架对于异常诊断具有较高的精确程度,并且不会对系统性能造成太大的影响.

  • 2021-04-26
  • 阅读237
  • 下载0
  • 14页
  • pdf

加氢装置CPS平台中的过程管控关键问题研究

以新一代信息通信技术改造提升传统产业和发展智能制造,已成为制造业重要的发展趋势。石化智能工厂以卓越运营为核心目标,按照“炼化生产一体化优化、炼化生产集成管控、全生命周期资产管理”三条主线(以下简称“三条主线”)建设信息物理系统(CPS),提升工厂运营管理水平。目前围绕三条主线的石化企业CPS基于国内外工业软件进行集成开发,但相关专业的工业软件存在国产化困难或计算不准确的问题。而且,在三条主线的初期工业应用过程中,一些无法解决的典型问题已显现出来,如在生产一体化优化方面,要实现精准预测计划排产业务并指导生产,核心是建立准确即时的装置投入产出模型,而非目前基于近似的机理模型或经验数据模型;在炼化生产集成管控方面,目前基于定期化验来控制二值型产品的指标,检测出产品质量偏差后不合格产品已经产生一段时间了,存在检测滞后影响产品质量问题,需要建立能够预测二值型产品质量指标的数学模型;在全生命周期资产管理方面,目前主要通过设备运行参数报警或定期检维修来保证设备的稳定运行,存在设备过度维修或因设备问题导致非计划停车等问题,合理建立模型及时对设备在线全面评估是保证设备稳定运行避免非计划停车的必经之路。加氢装置是炼化过程的重要组成部分,其智能化操作对石油化工产品结构升级、提质增效越来越重要。因此,对加氢装置进行智能化建设并搭建其优质CPS平台,并由此推广到炼化过程其他单元,将推动石化企业CPS的整体建设水平。

  • 2021-06-30
  • 阅读237
  • 下载0
  • 143页
  • pdf