综合以上种种不良现象,可以看出,不良现象均会造成浪费,这些浪费包括: 1,资金的浪费 5,形象的浪费 2,场所的浪费 6,效率的浪费 3,人员的浪费 7,品质的浪费 4,士气的浪费 8,成品的浪费 因此如何成为一个有效率,高品质,低成本的企业,第一步就是要重视[整理,整顿,清洁]的工作,并彻底的把它做好. 对以上这些病症,我们开给一个处方,药名叫[6S]
确保机械驱动系统的安全在很大程度上依赖于准确的变速箱故障诊断。然而,实际多工况和不均匀样本分布的存在使变速箱的故障诊断更具挑战性。尽管使用卷积神经网络(CNNs)的智能故障诊断(IFD)已经显示出有希望的结果,但它们通常需要强大的反馈学习和经验丰富的超参数调整来完成不同的任务。在本文中,从深度强化学习(DRL)的角度提出了一种新的方法,称为多尺度深度注意力Q网络(MDAQN),用于不平衡齿轮箱故障诊断。引入了一种考虑类间偏差的不平衡分类马尔可夫决策过程(ICMDP),作为数据不平衡情况下增强分类策略学习的环境模拟。此外,设计了一种新的多尺度注意力卷积网络作为深度Q网络(DQN)算法的代理结构,从而提高了在复杂运行条件下的判别特征学习能力。通过利用DRL的弱反馈交互,对诊断模型进行训练,从而有效地进行不平衡齿轮箱故障诊断。在三个齿轮箱不平衡数据集上的实验结果表明,MDAQN表现出优越的特征提取能力和泛化能力,与多种现有方法相比,准确率超过99.0%。Index Terms—注意力,深度强化学习(DRL),变速箱,不平衡故障诊断,多尺度学习
高效的散热及温度均衡控制技术 , 降低电池的温升及温差; 针对不同的应用场景和站址 , 采用合适的技术方案; 运维过程中的温度均衡控制技术;
中国提出“30·60”的“双碳”目标,这一承诺带来的产业结构调整是生活生产方式、发展理念和发展方式系统性的变革,是技术创新、投资理念和配套制度的变革。一方面发展必然带来碳排放,另一方面时间短、任务重,有效实施并非容易的事。因此,需要深入思考在制订“双碳”目标和行动方案的前提下,资产视角下的运营和结合乡村振兴的创新投资模式。
本期给大家推荐李乃鹏教授的一种基于片段数据的非参数退化建模剩余寿命预测方法。基于状态维修(CBM)通过预测设备剩余使用寿命(RUL),在设备发生故障前制定维修计划,是保证设备安全运行的有效手段。由于监测中断和/或传感器读数丢失会产生片段数据。而片段数据只记录了一个随机的退化过程,初始退化时间信息通常会丢失。因此,无法使用常用的时间相关建模框架对其进行建模。为解决这一问题,文章提出了一种基于片段数据的非参数退化建模方法用于RUL预测。该方法利用基于退化状态的函数定义剩余寿命。并提出了一种基于极大似然估计的主分析(PAMLE)算法来恢复故障单元的缺失数据。最后,通过疲劳裂纹扩展数据集和锂离子电池退化数据集验证了该方法的有效性。
在这项工作中,提出了一种新的预测驱动的产品数据管理框架,它提供了一个集成RUL预测和维护决策的综合解决方案。在预测阶段,我们采用基于BDL的框架来限定任意的和认知的不确定性,并输出RUL的预测性分布。在维修决策阶段,提出了一种在一般检查场景下的实用策略。该模型能够在任何时刻快速评估R选项和DN选项的成本率,并生成满足操作约束的暂定的产品数据管理计划。随着逐步收集更多的CM数据,我们的框架动态更新和调整维护和备件订购决策,以生成更可靠的PDM时间表。通过与几种基准策略的比较,基于NASA Ames预测卓越中心提供的涡扇发动机数据集,我们发现基于BDL方法驱动的基准策略可以在不确定性量化的情况下增强预测结果,从而提高动态PDM决策的性能。在定期和不定期检查的情况下,建议的政策导致的平均成本率非常接近理想的政策。这项研究对行业具有实际意义,展示了将不确定性量化和操作约束纳入到PDM政策中的好处。增强的策略性能带来了更好的维护规划,降低了成本并提高了盈利能力,同时还提高了客户满意度。
企业级海量数据的知识化已日趋成为行业共识,通过海量数据的知识化集成,可以加速数据标准化、消除/减少歧义、链接数据孤岛等。知识图谱作为表达能力更强的数据建模形式,也需要不断技术升级与时俱进。知识图谱和大型语言模型都是用来表示和处理知识的手段。大模型补足了理解语言的能力,知识图谱则丰富了表示知识的方式,两者的深度结合必将为人工智能提供更为全面、可靠、可控的知识处理方法。
生物质:是指动植物和微生物的非化石结构且可生物降解的有机物质。包括农业、林业及相关产业的产品、副产品、残留物和废物,以及非化石结构且可生物降解的工业及城市垃圾的有机组成部分。生物质还包括通过非化石结构且可生物降解的有机物质分解回收的气体和液体。
没有账户,需要注册
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
[摘 要]?水电站是国家能源战略部署重要的组成部分, 水电站各组件的状态参数及运行参数的收集、分析和反馈对电站的安全稳定运行至关重要。本文针对国内大多数水电站目前采用的传统人工巡检和工业监控相结合的系统存在的人力消耗大、安全系数低, 工业摄像头易出现死角、人工监视屏幕疲劳等问题, 对已开发用于电站监测的智能巡检机器人的工作原理及在水电站内日常巡检和运行分析系统进行介绍, 并将机器人所采集到的信号分为一次状态信号、缓慢变化信号、快速脉动时序信号。针对快速脉动时序信号独有的复杂性和非线性特性, 本文将传统时频信号分析方法和非线性混沌分析方法相结合, 分析快速脉动时序信号, 得到其非线性特征与机组运行不稳定性的关联性。结果表明在智能巡检分析模块加入非线性混沌分析可以有效建立机组信号与运行状态的关系, 实现水电站实时状态监测。[关键词]?水电站; 智能巡检; 压力脉动; 混沌分析
坚持法治是最好的营商环境,强化系统思维、改革思维、底线思 维,注重顶层设计、立法先行,加强改革举措的系统集成、协同高效, 积极构建现代化市场监管制度体系。
经历前两年周期性下滑后,全球半导体产业在2024年逐步迎来复苏。受到人工智能突破性发展的推动,2024年上年半中国集成电路行业表现突出,芯片制造、芯片设计企业营收普遍好转。人工智能成为驱动产业增长的重要力量。与时同时,半导体设备需求持续旺盛,中国市场已经连续多个季度稳坐全球最大半导体设备市场宝座,多家行业机构对市场发展持乐观态度。
近年来,边缘计算已经从新兴概念,逐步成为耳熟能详的关键技术之一。无论是生产建设、生活服务、娱乐消费,还 是城市管理等,边缘计算已加速应用于社会的方方面面,引领社会迈向数智化时代。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南