• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

蔡希鹏教高:大规模清洁能源规模化送出关键技术研究

南网科研院蔡希鹏院长以“大规模清洁能源规模化送出关键技术研究”为题分享了南方电网公司直流输电技术发展历史和柔性直流输电技术在未来大规模清洁能源输送中的技术创新和应用。

  • 2024-09-04
  • 阅读158

蔡希鹏教高:海上风电大规模并网送出新技术

南方电网科学研究院有限责任公司蔡希鹏院长作了题为“海上风电大规模并网送出新技术”的主旨报告。征得蔡院长同意,特与您分享!

  • 2024-09-04
  • 阅读190

【EAAI】基于大规模多模工业数据的异常检测:非平稳核与自编码器的融合方法

核方法和神经网络是两种主流的非线性数据建模方法,已被广泛应用于工业过程监测。然而,它们都存在不完美的性质,因此相关应用受到限制。一方面,内核的可重构性、可扩展性和对超参数的鲁棒性不强,导致它们在大规模数据建模和监控中的性能下降。另一方面,排序为参数初始化的神经网络的高维参数空间存在严重的异常检测性能不一致,这使得行业对使用神经网络持谨慎态度。受这些事实的启发,我们提出将核和神经网络集成在一起,形成一种可扩展、可重构和性能一致的新模型结构。具体来说,通过(1)从训练集中选择关键边缘和内部数据作为隐藏层径向基函数的中心,以及(2)在训练过程中自适应调整核宽度,提出了一种基于自编码器的非平稳模式选择核(AE-NPSK)。此外,新的神经网络具有很强的性能一致性,这有助于搜索最优参数。最后,我们在具有挑战性的多模工艺上测试了所提出方法的性能。结果验证了所提出方法的有效性。关键词:核方法、人工神经网络、过程监测、多模式过程、自动编码器、径向基函数

  • 2024-10-04
  • 阅读1181

【JPC】用于动态过程监测的重排序短期自相关驱动远程判别卷积自编码器

由于现代复杂工业过程中的非线性、动力学和局部特性,深度神经网络(DNN)可能会导致次优的监测性能。为了克服这些局限性,本文首先提出了一种新的数据构造方法,将短期自相关和空间相关性建模为三维矩阵,然后对其元素进行重新排序,以更好地编码局部和时间结构。随后,我们基于自注意机制设计了一种称为远程判别注意(LDA)的新结构,以扩大原始卷积神经网络(CNN)的接受范围,从而提取全局特征。最后,我们提出了一种基于LDA的远程判别注意自编码器(LDCA)监测模型,从构建的矩阵中提取远程和局部变量之间的结构特征。通过数值例子和三相流过程验证了该方法在故障检测中的有效性。

  • 2024-10-04
  • 阅读975

IEEETII一种可解释的增量随机权重神经网络构造算法及其应用

本文旨在为增量随机权重神经网络(IRWNN)提供一种可解释的学习范式。IRWNNs因其易于部署和快速学习速度而成为神经网络算法的热门研究方向。然而,现有的IRWNN难以解释隐藏节点(参数)如何影响网络残差的收敛。为了解决这一差距,本文提出了一种可解释的构造算法(lCA)。具体来说,我们首先对网络构建过程进行空间几何分析,建立网络残差和隐藏参数之间的空间几何关系,以可视化隐藏参数对网络残差收敛的影响。其次,基于空间几何关系和节点池策略,建立了一种具有空间几何信息的可解释控制策略,以获得有助于网络残差收敛的隐藏参数。此外,为了便于lCA处理大数据的复杂任务,本文提出了一种低复杂度的轻量级ICA,即ICA+。最后,从理论上证明了本文提出的ICA和ICA+具有普遍的逼近性质。在两个真实世界数据集和七个基准数据集上的实验结果表明,所提出的ICA和ICA+在快速学习、良好泛化和网络结构紧凑性方面具有优势。关键词:数据建模、可解释构造算法、神经网络(NN)、随机算法、空间几何信息。

  • 2024-12-16
  • 阅读363

工业操作系统应用现状

工业操作系统是指能够实时采集传输工业数据、监测生产过程、管理控制单元和保障生产安全的系统,通常由传感器、控制器、执行器、通信网络和系统软件等组成,共同保障工业生产的高效率、高质量、安全稳定运行,主要包括嵌入式软件、工业协议和工业控制单元,包括可编程控制系统(PLC)、分散型控制系统(DCS)、数据采集与监控系统(SCADA)和安全仪表系统(SIS)等。

  • 2025-05-20
  • 阅读377

先进过程控制(APC)的发展、应用

先进过程控制(Advanced Process Control,APC)是一类区别于常规PID控制的控制策略的统称,主要用来处理常规控制效果不好,甚至无法控制的复杂工业过程控制问题。APC已经在炼油、石化、化工、建材、冶金、热电等流程工业得到应用,有效地帮助企业提升了生产效率、产品质量和资源利用效率。

  • 2025-05-22
  • 阅读453

电池系统管理|离散型卡尔曼滤波算法基础

电池系统管理 | 离散型卡尔曼滤波算法基础

  • 2024-11-17
  • 阅读246
上一页 1 …… 21472148214921502151215221532154215521562157 …… 2193 下一页 共 17542 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

低空基础设施发展研究报告(2025)

当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。

  • 阅读291
  • 下载1

华为数字化转型之道

首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,

  • 阅读357
  • 下载4

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读301
  • 下载3

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读348
  • 下载2

最新上线

综合算力指数蓝皮书(2025 年)

近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。

  • 阅读33
  • 下载0

人工智能驱动的科技创新

2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代

  • 阅读33
  • 下载2

中央企业高质量数据集建设研究报告

在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与

  • 阅读31
  • 下载1

数据标准管理实践指南(2.0版)

近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据

  • 阅读38
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南