• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

【IEEETII】数据不确定性下基于深度混合网络的工业过程多变量时间序列预测

随着工业物联网(IIoT)的快速发展,减少数据的不确定性已成为预测系统发展趋势和制定未来维护策略的关键问题。本文提出了一个端到端的、基于深度混合网络的、短期的、多变量的工业过程时间序列预测框架。首先,采用最大信息协同有效性提取非线性变量相关特征。其次,设计了一个带有残差消除模块的卷积神经网络来消除数据的不确定性。第三,以时间分布的形式连接双向门控递归单元网络,以实现提前预测。最后,采用优化的贝叶斯优化方法来优化模型的学习率。在案例研究中,与其他最先进的基于深度学习的时间序列预测方法进行了比较,说明了所提出的框架在噪声IIoT环境中的优越性。

  • 2024-06-17
  • 阅读272

【MEASUREMENT】基于数据空间的复杂工业过程根源诊断与故障传播路径识别

故障诊断在保证工业安全和提高社会效益方面发挥着至关重要的作用。然而,由于过程耦合和复杂的流程,准确识别故障路径变得具有挑战性。本文提出了一种基于数据的故障诊断和路径识别方法。它涉及通过从数据中提取因果关系来构建多层、多因果的数据空间。基于注意力的卷积神经网络有效地捕捉因果关系。修剪和专业知识有助于形成一个精细的结构。使用LSTM最小二乘线性(OLS)方法确定故障传播方向,有助于快速定位问题。对浮法玻璃生产和Tennessee Eastman的实验验证显示了显著的结果,支持提高工业过程的可靠性和效率。

  • 2024-06-17
  • 阅读330

【JTICE】用于过程故障诊断的半监督特征对比卷积神经网络

背景:现代工业过程涉及多个操作单元,这些操作单元执行各自的功能并相互耦合。准确提取过程变量中的复杂非线性关系是故障诊断的关键。大多数基于深度学习的故障诊断方法在很大程度上依赖于标记数据,但标记样本在实际工业过程中受到限制。

  • 2024-06-17
  • 阅读263

面向多场景学习的高速EMU牵引电机故障诊断的SFCDA模型

针对高速动车组的在多场景学习下面临的计算效率低,场景适应能力不足的问题,如:单源域和单目标域(1S1T)。单源域和多目标域(1SmT)。小和不平衡(S&I)故障诊断。构建了一种基于稀疏滤波的交叉域自适应轴承故障诊断模型,有效地提高了高速牵引电机轴承故障诊断模型的泛化能力。

  • 2024-09-12
  • 阅读226

通过网闸技术实现内外网隔离

近年来,随着我国信息化建设步伐的加快,“电子政务”应运而生,并以前所未有的速度发展。电子政务体现在社会生活的各个方面:工商注册申报、网上报税、网上报关、基金项目申报等等。电子政务与国家和个人的利益密切相关,在我国电子政务系统建设中外部网络连接着广大民众,内部网络连接着政府公务员桌面办公系统,专网连接着各级政府的信息系统,在外网、内网、专网之间交换信息是基本要求。如何在保证内网和专网资源安全的前提下,实现从民众到政府的网络畅通、资源共享、方便快捷是电子政务系统建设中必须解决的技术问题。一般采取的方法是在内网与外网之间实行防火墙的逻辑隔离在内网与专网之间实行物理隔离。本文将介绍大汉网络公司基于网闸技术构建内外网一体化门户的案例。

  • 2024-07-04
  • 阅读204

【IEEETII】基于统计物理的工业自动化领域卷积神经网络分类可靠性解释

人工智能驱动的自动化已逐渐成为新自动化时代的技术趋势。目前,许多人工智能技术已被应用于提高自动化领域的智能化水平。其中,卷积神经网络(CNN)技术是最具代表性的技术之一,它被用于工业自动化中的缺陷产品检测,机器人-人类跟踪已被广泛应用于机器视觉驱动的自动化领域。然而,当前神经网络应用的高度依赖性导致了缺陷产品检测系统的潜在故障。在本文中,我们使用统计物理渗流模型对CNN的学习和决策过程进行建模。基于渗流的分化程度和脆弱性,我们提出了CNN分化程度的概念,并总结了量化它的经验公式。从对抗性攻击和对抗性训练的角度分析了分化程度与脆弱性之间的关系,以解释CNN的决策机制和分类可靠性。物理模型可以接近事物的本质,最终指导工业自动化的可靠CNN。

  • 2024-06-17
  • 阅读182

【IEEETII】基于门控卷积神经网络的新型变压器工业过程动态软测量建模

工业过程数据通常是传感器采集的时间序列数据,具有高度非线性、动态性和噪声等特点。许多现有的软传感器建模方法通常只关注单个时间点的主变量和辅助变量,而忽略了工业过程数据的时序特征。同时,基于深度学习的考虑时序特性的软测量方法通常面临梯度消失和并行计算的困难。因此,提出了一种新的基于门控卷积神经网络的变压器(GCT),用于工业过程的动态软传感器建模。GCT对时间序列数据的短期模式进行编码,并通过改进的门控卷积神经网络(CNN)自适应地过滤重要特征。然后,将多头注意力机制应用于建模任意两个矩之间的相关性。最后,通过具有高速公路连接的线性神经网络层获得预测结果。在本文中,聚丙烯和精对苯二甲酸工业过程的动态软传感器建模实验表明,与反向传播神经网络、极限学习机、长短期记忆(LSTM)和基于CNN的LSTM相比,该方法达到了最先进的水平。

  • 2024-06-17
  • 阅读303

【IEEETIM】基于全局局部慢特征分析的深度学习工业过程异常工况识别

确保工业过程的长期安全高效运行依赖于对异常操作条件的实时识别。然而,工业过程经常在不同的操作条件之间切换,并面临苛刻的生产环境。因此,历史异常样本中存在的一些极端情况可以掩盖一些轻微的异常,使其表现出与正常操作条件相似的过程动力学。为了解决这个问题,本研究提出了一种基于全局局部慢特征分析的卷积神经网络(GLSFA-NN)。全局慢特征分析(SFA)模型在宏观层面提取粗尺度慢特征,以区分具有不同过程动力学的异常,而局部SFA算法在微观层面提取实时和精细尺度慢特征以识别具有相似过程动力学的异常。通过结合全局和局部慢特征,可以同时识别具有相似或不同动力学的异常。然后使用一维卷积神经网络(1-D-CNN)从全局局部慢速特征中自动提取深度特征,并识别异常操作条件。工业实验表明,该方法优于其他传统方法,对具有切换条件和极端情况的工业过程具有较高的异常识别精度

  • 2024-06-17
  • 阅读279
上一页 1 …… 27872788278927902791279227932794279527962797 …… 2876 下一页 共 23002 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读117
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读101
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读109
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读157
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读15
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读22
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读29
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读76
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南