【IEEETII】基于统计物理的工业自动化领域卷积神经网络分类可靠性解释

人工智能驱动的自动化已逐渐成为新自动化时代的技术趋势。目前,许多人工智能技术已被应用于提高自动化领域的智能化水平。其中,卷积神经网络(CNN)技术是最具代表性的技术之一,它被用于工业自动化中的缺陷产品检测,机器人-人类跟踪已被广泛应用于机器视觉驱动的自动化领域。然而,当前神经网络应用的高度依赖性导致了缺陷产品检测系统的潜在故障。在本文中,我们使用统计物理渗流模型对CNN的学习和决策过程进行建模。基于渗流的分化程度和脆弱性,我们提出了CNN分化程度的概念,并总结了量化它的经验公式。从对抗性攻击和对抗性训练的角度分析了分化程度与脆弱性之间的关系,以解释CNN的决策机制和分类可靠性。物理模型可以接近事物的本质,最终指导工业自动化的可靠CNN。

  • 2024-06-17
  • 收藏0
  • 阅读93

方案详情

评价

评分 :
   *