第28章 灰色系统理论及其应用

客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解, 人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断 来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章 介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何 对实际问题进行分析和解决。 §1 灰色系统概论 客观世界在不断发展变化的同时,往往通过事物之间及因素之间相互制约、相互 联系而构成一个整体,我们称之为系统。按事物内涵的不同,人们已建立了工程技术、 社会系统、经济系统等。人们试图对各种系统所外露出的一些特征进行分析,从而弄清 楚系统内部的运行机理。从信息的完备性与模型的构建上看,工程技术等系统具有较充 足的信息量,其发展变化规律明显,定量描述较方便,结构与参数较具体,人们称之为 白色系统;对另一类系统诸如社会系统、农业系统、生态系统等,人们无法建立客观的 物理原型,其作用原理亦不明确,内部因素难以辨识或之间关系隐蔽,人们很难准确了 解这类系统的行为特征,因此对其定量描述难度较大,带来建立模型的困难。这类系统 内部特性部分已知的系统称之为灰色系统。一个系统的内部特性全部未知,则称之为黑 色系统。 区别白色系统与灰色系统的重要标志是系统内各因素之间是否具有确定的关系。 运动学中物体运动的速度、加速度与其所受到的外力有关,其关系可用牛顿定律以明确 的定量来阐明,因此,物体的运动便是一个白色系统。 当然,白、灰、黑是相对于一定的认识层次而言的,因而具有相对性。某人有一 天去他朋友家做客,发现当外面的汽车开过来时,他朋友家的狗就躲到屋角里瑟瑟发抖。 他对此莫名其妙。但对他朋友来讲,狗的这种行为是可以理解的,因为他知道,狗在前 不久曾被汽车撞伤过。显然,同样对于“狗的惧怕行为”,客人因不知内情而面临一个 黑箱,而主人则面临一个灰箱。 作为实际问题,灰色系统在大千世界中是大量存在的,绝对的白色或黑色系统是 很少的。随着人类认识的进步及对掌握现实世界的要求的升级,人们对社会、经济等问 题的研究往往已不满足于定性分析。尽管当代科技日新月异,发展迅速,但人们对自然 界的认识仍然是肤浅的。粮食作物的生产是一个实际的关系到人们吃饭的大问题,但同 时,它又是一个抽象的灰色系统。肥料、种子、农药、气象、土壤、劳力、水利、耕作 及政策等皆是影响生产的因素,但又难以确定影响生产的确定因素,更难确定这些因素 与粮食产量的定量关系。人们只能在一定的假设条件(往往是一些经验及常识)下按照 某种逻辑推理演绎而得到模型。这种模型并非是粮食作物生产问题在理论认识上的“翻 版”,而只能看作是人们在认识上对实际问题的一种“反映”或“逼近”。 社会、经济、农业以及生态系统一般都会有不可忽略的“噪声”(即随即干扰)。 现有的研究经常被“噪声”污染。受随机干扰侵蚀的系统理论主要立足于概率统计。通 过统计规律、概率分布对事物的发展进行预测,对事物的处置进行

  • 2021-10-31
  • 阅读214
  • 下载0
  • 52页
  • pdf

第06章 排队论

排队论起源于 1909 年丹麦电话工程师 A. K.爱尔朗的工作,他对电话通话拥挤问 题进行了研究。1917 年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理 论的几个问题的解决”。排队论已广泛应用于解决军事、运输、维修、生产、服务、库 存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。 排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常 常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说, 到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中 出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机 待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机 性。可以说排队现象几乎是不可避免的。 排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展 的一门学科。它研究的内容有下列三部分: (i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待 时间分布和忙期分布等,包括了瞬态和稳态两种情形。 (ii)最优化问题,又分静态最优和动态最优,前者指最优设计。后者指现有排队 系统的最优运营。 (iii)排队系统的统计推断,即判断一个给定的排队系统符合于哪种模型,以便 根据排队理论进行分析研究。 这里将介绍排队论的一些基本知识,分析几个常见的排队模型。 §1 基本概念 1.1 排队过程的一般表示 下图是排队论的一般模型。 图 1 排队模型 图中虚线所包含的部分为排队系统。各个顾客从顾客源出发,随机地来到服务机构,按 一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。 凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员 组成服务系统。对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的 众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。 因此,顾客总希望服务 机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而 会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权 衡决策,使其达到合理的平衡。 1.2 排队系统的组成和特征 一般的排队过程都由输入过程、排队规则

  • 2021-10-31
  • 阅读231
  • 下载0
  • 36页
  • pdf

第08章 层次分析法

层次分析法(Analytic Hierarchy Process,简称 AHP)是对一些较为复杂、较为模 糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美 国运筹学家 T. L. Saaty 教授于上世纪 70 年代初期提出的一种简便、灵活而又实用的 多准则决策方法。 §1 层次分析法的基本原理与步骤 人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是 一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。层次 分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法。 运用层次分析法建模,大体上可按下面四个步骤进行: (i)建立递阶层次结构模型; (ii)构造出各层次中的所有判断矩阵; (iii)层次单排序及一致性检验; (iv)层次总排序及一致性检验。 下面分别说明这四个步骤的实现过程。 1.1 递阶层次结构的建立与特点 应用 AHP 分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次 的结构模型。在这个模型下,复杂问题被分解为元素的组成部分。这些元素又按其属 性及关系形成若干层次。上一层次的元素作为准则对下一层次有关元素起支配作用。 这些层次可以分为三类: (i)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结 果,因此也称为目标层。 (ii)中间层:这一层次中包含了为实现目标所涉及的中间环节,它可以由若干 个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。 (iii)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等, 因此也称为措施层或方案层。 递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地 层次数不受限制。每一层次中各元素所支配的元素一般不要超过 9 个。这是因为支配 的元素过多会给两两比较判断带来困难。 下面结合一个实例来说明递阶层次结构的建立

  • 2021-10-31
  • 阅读227
  • 下载0
  • 8页
  • pdf

第09章 插值与拟合

插值:求过已知有限个数据点的近似函数。 拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义 下它在这些点上的总偏差最小。 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二 者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时 容易确定,有时则并不明显。 §1 插值方法 下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插 值、Hermite 插值和三次样条插值。 1.1 拉格朗日多项式插值 1.1.1 插值多项式 用多项式作为研究插值的工具,称为代数插值。其基本问题是:已知函数 f (x)在 区间[a,b]上n +1个不同点 x0 , x1 ,L, xn 处的函数值 yi = f (xi) (i = 0,1,L,n) ,求一个 至多n 次多项式 ? n (x) = a0 + a1x +L+ an x n (1) 使其在给定点处与 f (x)同值,即满足插值条件 ? n (xi) = f (xi) = yi (i = 0,1,L,n) (2) ? n (x)称为插值多项式,xi(i = 0,1,L,n) 称为插值节点,简称节点,[a,b]称为插值区 间。从几何上看,n 次多项式插值就是过n +1个点(xi , f (xi)) (i = 0,1,L,n) ,作一条 多项式曲线 y = ? n (x) 近似曲线 y = f (x) 。 n 次多项式(1)有n +1个待定系数,由插值条

  • 2021-10-31
  • 阅读225
  • 下载0
  • 26页
  • pdf

第10章 数据的统计描述和分析

数理统计研究的对象是受随机因素影响的数据,以下数理统计就简称统计,统计是 以概率论为基础的一门应用学科。 数据样本少则几个,多则成千上万,人们希望能用少数几个包含其最多相关信息的 数值来体现数据样本总体的规律。描述性统计就是搜集、整理、加工和分析统计数据, 使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。它是统计推断的基 础,实用性较强,在统计工作中经常使用。 面对一批数据如何进行描述与分析,需要掌握参数估计和假设检验这两个数理统计 的最基本方法。 我们将用 Matlab 的统计工具箱(Statistics Toolbox)来实现数据的统计描述和分析。 §1 统计的基本概念 1.1 总体和样本 总体是人们研究对象的全体,又称母体,如工厂一天生产的全部产品(按合格品及 废品分类),学校全体学生的身高。 总体中的每一个基本单位称为个体,个体的特征用一个变量(如 x )来表示,如一 件产品是合格品记 x = 0 ,是废品记 x = 1;一个身高 170(cm)的学生记 x = 170。 从总体中随机产生的若干个个体的集合称为样本,或子样,如n 件产品,100 名学 生的身高,或者一根轴直径的 10 次测量。实际上这就是从总体中随机取得的一批数据, 不妨记作 x1 , x2 ,L, xn ,n 称为样本容量。 简单地说,统计的任务是由样本推断总体。 1.2 频数表和直方图 一组数据(样本)往往是杂乱无章的,做出它的频数表和直方图,可以看作是对这 组数据的一个初步整理和直观描述。 将数据的取值范围划分为若干个区间,然后统计这组数据在每个区间中出现的次 数,称为频数,由此得到一个频数表。以数据的取值为横坐标,频数为纵坐标,画出一 个阶梯形的图,称为直方图,或频数分布图。 若样本容量不大,能够手工做出频数表和直方图,当样本容量较大时则可以借助 Matlab 这样的软件了。让我们以下面的例子为例,介绍频数表和直方图的作法。 例 1 学生的身高和体重 学校随机抽取 100 名学生,测量他们的身高和体重,所得数据如表

  • 2021-10-31
  • 阅读211
  • 下载0
  • 12页
  • pdf

第13章 微分方程建模

微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微 分方程的定解问题。把形形色色的实际问题化成微分方程的定解问题,大体上可以按以 下几步: 1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。 2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等等)。 3. 运用这些规律列出方程和定解条件。 列方程常见的方法有: (i)按规律直接列方程 在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉, 并直接由微分方程所描述。如牛顿第二定律、放射性物质的放射性规律等。我们常利用 这些规律对某些实际问题列出微分方程。 (ii)微元分析法与任意区域上取积分的方法 自然界中也有许多现象所满足的规律是通过变量的微元之间的关系式来表达的。对 于这类问题,我们不能直接列出自变量和未知函数及其变化率之间的关系式,而是通过 微元分析法,利用已知的规律建立一些变量(自变量与未知函数)的微元之间的关系式, 然后再通过取极限的方法得到微分方程,或等价地通过任意区域上取积分的方法来建立 微分方程。 (iii)模拟近似法 在生物、经济等学科中,许多现象所满足的规律并不很清楚而且相当复杂,因而需 要根据实际资料或大量的实验数据,提出各种假设。在一定的假设下,给出实际现象所 满足的规律,然后利用适当的数学方法列出微分方程。 在实际的微分方程建模过程中,也往往是上述方法的综合应用。不论应用哪种方法, 通常要根据实际情况,作出一定的假设与简化,并要把模型的理论或计算结果与实际情 况进行对照验证,以修改模型使之更准确地描述实际问题并进而达到预测预报的目的。 本章将利用上述方法讨论具体的微分方程的建模问题

  • 2021-10-31
  • 阅读229
  • 下载0
  • 14页
  • pdf