HDFS概述 ? 分布式文件系统 – 在物理上是由多个计算机作为节点构成; – 节点分为主节点(Master Node)和从节点 (Slave Node); ? HDFS(Hadoop Distributed File System) – HDFS是一种适合运行在通用硬件上的,具有高 容错、高吞吐量的分布式文件系统。 – 主从节点称为NameNode和DataNode;
采用了很多数据库的实现策略。但并不支持完整的 关系型数据模型;而是为客户端提供了一种简单的 数据模型,客户端可以动态地控制数据的布局和格 式,并且利用底层数据存储的局部性特征。 ? 将数据看成无意义的字节串,客户端需要将结构化 和非结构化数据串行化再存入Bigtable
Hbase安装 ? 1 Hbase的三种运行模式:单机模式、伪分布模式、分 布式模式。 ? 单机模式可以不依赖于HDFS; ? 伪分布模式和分布式模式需要HDFS支持。 ? 一般安装Hadoop过程中并没有安装Zookeeper, Hbase等,只是安装了HDFS和MapReduce等核心组件, Zookeeper需单独安装。 ? 2 下载Hbase的安装包; ? 3 解压Hbase安装包到某个文件夹中,例如/usr/local; ? 4 把文件夹下的/bin添加到path中,例如/usr/local/path;
Hive中的元数据包括表的名字,表的列和分区及其属性,表的属 性(是否为外部表等),表的数据所在目录等。 由于Hive的元数据 需要不断的更新、修改,而HDFS系统中的文件是多读少改的, 这显然不能将Hive的元数据存储在HDFS中。目前Hive将元数据 存储在数据库中,如Mysql、Derby中。我们可以通过修改Hive 的配置文件以修改元数据的存储方式。
Hadoop MapReduce采用Master/Slave结构 ? Master:是整个集群的唯一的全局管理者,功能包括:作业管理、状 态监控和任务调度等,即MapReduce中的JobTracker。 ? Slave:负责任务的执行和任务状态的回报,即MapReduce中的 TaskTracker。
MapReduce的具体应用 基本思路: ? 在map阶段, 把关键字 作为key输出,并在 value中标记出数据是 来自data1还是data2; 在shuffle阶段会自然按 key分组; ? reduce阶段,判断每一 个value是来自data1还 是data2,在内部分成2 组,做集合的乘积。
Spark是基于分布式数据集的概念的,可以包含任意的Java、Python对象。 我们只需要基于这些外部数据构造数据集,然后对这些数据集进行并行操 作。Spark API的基础构件是RDD API,在RDD API之上,又提供了高层的API 供使用,例如DataFrame API,机器学习API。这些更高层次的API提供了特 定数据操作的方法,本部分将通过若干例子说明最简单的Spark应用,展示 Spark的强大功能。
数据描述性分析 用统计学方法,描述数据的统计特征量,分析数 据的分布特性。 主要包括数据的集中趋势分析(Central tendency)、 数据离散趋势分析(Dispersion tendency)、数据的频 数分布(Frequency distribution)等。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南