DeepSeek-R1推理大模型引爆了国内外 AI 社区,并火出了圈。最近,各个行业又掀起了接入 DeepSeek 的狂潮,大家唯恐落后于人
有的用户觉得DeepSeek不好用,其实可能恰恰是因为给DeepSeek喂了太多的提示词,限制了它的深度思考(如右图,按照四维度分析框架,只得出干巴巴的报告),它与指令性大模型不同,其实是不需要太长的提示词的
由于电池荷电状态(state of charge,SOC)无法直接测量,且传统的SOC估算方法精度低。为了提升锂离子电池SOC估算精度,对比了不同深度学习网络模型应用于SOC估算的效果,并提出了一种基于DRSN-CW-LSTM网络的锂离子电池SOC估算方法。该方法基于长短期记忆网络(long-short-term memory,LSTM)和逐通道不同阈值的深度残差收缩网络(deep residual shrinkage networks with channel-wise thresholds,DRSN-CW),利用锂离子电池电压、电流、温度、容量等数据信息在深度残差收缩网路中进行特征提取,通过LSTM进一步拟合时间序列数据趋势,实现锂离子电池在使用周期内SOC的预测。在DRSN-CW网络的残差收缩模块中可以实现自适应噪声数据处理功能,消除锂离子电池数据流质量对SOC预测的负面影响。利用锂电池公共数据集训练所提出的网络,对比了3种神经网络模型在该两组数据集上的预测效果。实验结果表明,所提出的深度学习模型在两组公开数据集上的MAE和RMSE均值都控制在5%以内,相比其他3种深度学习模型有更好的抗噪性能和预测性能,且估算精度高。
轻型车与中重型车长期电动化目标清晰;到2035年,6吨以下轻型电动车的保有量将达到36-49%,6吨以上中重型电动车的保有量将达到22-26%
DeepSeek-R1发布开源,擅长处理复杂且在训练阶段大规模使用了强化学习技术,在仅有极少标注数据的情况下,极大提升模型推理能力。 DeepSeek-R1在数学、代码、自然语言推理等任务上,性能比肩OpenAl o1正式版。 9s)a1uaз.18d/ Deepseek-R1 100- 80 0penA1-01-1217 Deepseek-R1-32B 0penAl-01-mini DeepSeek-V3 41.6雀2. 目前大模型主流榜单开源模型DeepSeek-V3 位列榜首,与世界上最先进的闭源模型不分伯仲。
极端天气给新型电力系统的建设与运行带来诸多挑战,电力系统灵活性资源的不断丰富给了电网应对极端天气的新思路。考虑极端条件下储能等资源聚合参与电网负荷恢复的场景,研究了资源聚合参与电网韧性提升的策略方法。首先,基于储能等资源自身的运行状态,提出了资源剩余调节能力模型。然后,构建了计及资源剩余调节能力的资源聚合调控模型,并通过“域”刻画资源聚合体的剩余调节能力与运行功率的关联关系,进一步构建了面向“灾前-灾中-灾后”全阶段的电网优化运行与韧性提升模型。最后,通过算例分析,验证了该策略对电网韧性的提升效果。
大模型的兴起和发展,推动了人工智能的进步,并在自然语言处理、计算机视觉等领域取得一系列重要成果。大模型不仅是一种技术,它重塑了数据要素生态链,引领了产业研究、开发及应用的范式变革,使新产业、新业态、新模式进发潜能,展现出新活力,推动我们迈入一个全新的人工智能时代。
在"电力系统保护与控制”专题会议上天津大学朱介北教授作了题为“新能源构网控制性能评估与提升”的专题报告。?征得朱教授同意,特与您分享!
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。
2025 年,人工智能正式迈入 “智能体元年”,AI Agent?成为驱动产业变革的核心力量,硬件迭代、多模态融合、世界模型演进共同推动行业从 “被动响应” 向 “主动解决复杂问题” 跨越。
机器学习与深度学习有着明显的异同点 在数据准备和预处理方面,两者是很相似的。他们都可能对数据进行一些操作:数据清洗、数据标签、归一化、去噪、降维。核心区别:传统机器学习的特征提取主要依赖人工,针对特定简单任务的时候人工提取特征会简单有效,但是并不能通用;深度学习的特征提取并不依靠人工,而是机器自动提取的。这也是为什么都说深度学习的可解释性很差,因为有时候深度学习虽然能有好的表现,但是我们并不知道他的原理是什么。
2025年是中国人工智能规划中期规划的关键节点,AI场景解决方案从“能用”到“有用”到“好用”在垂2025年中国AI产品在用户规模与产品数量上已具备全球竞争力
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南