基于多源遥感数据提取投入产出数据,采用考虑非期望产出的超效率 EBM模型对2000—2015年山东省县域生态效率进行测度,在此基础上采用核密度估计、空间自相关等方法对山东省县域生态效率的时空特征进行分析。
增材制造(3D 打印)技术是目前被广泛誉为最具革命性的先进制造技术,无需任何模具可快速成形任意复杂构件且原材利用率高、生产周期短,增材制造技术的发展日新月异,已逐步进入产业化应用于各个行业。
地球表面的江河、湖泊和水库等内陆水体是水资源的主要组成部分,由气候变化和人类活动所引起的内陆水体分布和水质时空变化等问题已成为各国科学家和政府关注的热点
针对现有的对安全帽佩戴检测算法的参数多、网络复杂、计算量大、不利于在嵌入式等设备进行部署,且对遮挡目标辨别度差等问题,提出了一种改进的轻量级的安全帽检测算法YOLO-M3,先将YOLOv5s主干网络替换为MobileNetV3来进行特征提取,降低了网络的参数量和计算量。
目的 在施工现场,安全帽是最为常见和实用的个人防护用具,能够有效防止和减轻意外带来的头部伤害。 但在施工现场的安全帽佩戴检测任务中,经常出现难以检测到小目标,或因为复杂多变的环境因素导致检测准确率降低等情况。
针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进 YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。
随着技术的成熟和公司发现将 AI 融入智能产品和服务的创新方法,AI 正在迅速发展。没有任何组织能够幸免于 AI 的变革性影响,高管们现在就应该开始确保他们的公司为 AI 驱动的未来做好准备。
数据中台是一种数字化综合解决方案。数据中台采集、计算、存储和处理海量数据,保证数据的标准统一和口径一致,建 立全域级、可复用的数据存储能力中心和数据资产中心,组件化服务模块,提高数据共享和复用能力,灵活高效地解决前台的个性化需求。狭义来看,数据中台是一套实现数据资产化和服务复用的工具;广义来看,数据中台是一套运用数据推动企业数字化转型升级的机制和方法论。相较数据工厂时代,数据中台立于业务数据的积累沉淀,破于数据收集、整合、分析及应用的生态闭环。数据中台始于业务,用于业务,循环往复的理念与数据价值时代下数据资产价值最大化的目标契合
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案新能源场站无人值班建设方案
零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线零碳工厂建设与热能高效利用一事一议破局“零碳”技术路线
基于大语言模型的教育思想实验,其核心学术价值在于构建了一个“计算性社会实验室”:它能够尝试将杜威式的民主教育设想,置于当代复杂的数字社会结构与信息茧房的约束下进行模拟;它也可以探索弗莱雷的解放教育理论,将其转化为可计算的社会动力学模型,观察“对话”与“压迫”在不同权力结构下的演化轨迹与临界点。这种方法系统性地连接宏大理论与经验现实,通过生成可观测、可证伪的理论假设,使得教育研究得以在实施成本高昂、伦理风险巨大的真实世界干预之前,进行高效、低风险的场景分析与风险模拟。
计算机博弈是人工智能领域的重要应用,它以高对抗性的棋牌类游戏项目为研究对象,具有怡神益智、评判客观、挑战无穷的特点。近年来,随着人工智能、大模型等技术的飞速发展,计算机博弈模型能够自主学习复杂的策略和技能、处理更加复杂的博弈任务,成为衡量AI智能水平的重要领域之一。从棋类博弈到电子游戏,机器博弈不仅是技术进步的展示窗口,更是人类智慧与机器智能交互融合的舞台。未来,计算机博弈领域将继续快速发展,技术的融合和创新将推动该领域达到新的高度。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南