【评价标准】DB1304_T 353-2021 智慧平安社区建设体系评价标准,【评价标准】DB1304_T 353-2021 智慧平安社区建设体系评价标准,【评价标准】DB1304_T 353-2021 智慧平安社区建设体系评价标准
【深度报告】东吴证券-立足智慧矿山,发力充电网络,【深度报告】东吴证券-立足智慧矿山,发力充电网络,【深度报告】东吴证券-立足智慧矿山,发力充电网络
本文考虑了网内常规机组对系统短路容量的贡献,能够准确反映不同常规机组开机组合对系统安全稳定特性的影响。基于系统短路容量分析及安全稳定分析结果,提出了一种断面极限功率解析计算方法,并通过西北某电网实际算例分析,验证了所提方法的有效性和准确性。
传统的不确定性量化( uncertainty quantification,UQ )方法在处理高维问题时会遭遇维数灾难,解决这一挑战的一种方法是利用深度神经网络 ( deep neural networks,DNNs ) 强大的近似能力。然而,传统的 DNNs 通常需要大量高保真度 ( high-fidelity,HF) 数据训练来确保精确的预测,但由于计算或实验成本限制,此类数据可得性有限。为了减少训练费用,本研究引入了多保真度深度神经网络 ( multi-fidelity deep neural networks,MF?DNNs ),其中构建了一个子网络来同时捕获高保真度和低保真度 ( low-fidelity,LF ) 数据之间的线性和非线性相关性。MF?DNNs 的有效性最初通过准确近似各种基准函数来证明。随后,考虑输入不确定性的均匀分布或高斯分布,首次使用开发的MF? DNNs来模拟1维、32维和100维环境中的偶然不确定性传播,UQ 结果证实,MF? DNNs 能够熟练地预测兴趣参量 ( quantities of interest,QoI ) 的概率密度分布及其统计矩,而不会显著降低准确性。此外,MF?DNN 被用于模拟飞机推进系统内部的物理流动,同时考虑源自实验测量误差的偶然不确定性,基于二维欧拉流场和少量实验数据点,利用MF-DNNs对等熵马赫数分布进行了精确预测。总之,提出的 MF?DNN 框架在解决实际工程应用中的 UQ 和稳健优化挑战方面表现出巨大的潜力,尤其是在处理多保真度数据源时。
近年来学者们开发了多种用于机器状态监测的深度学习方法,在轴承故障诊断方面取得了令人瞩目的成功。尽管能够有效地诊断轴承故障,但大多数深度学习方法都非常依赖大量的数据,在工业应用中并不总是可获取到的。在实际工程中,轴承通常安装在经常发生速度和负载变化的旋转机械中,导致难以在所有操作条件下收集大型训练数据集。此外,在大多数深度学习算法中,物理信息常常会被忽略,有时会导致生成的结果不符合物理定律。为了应对这些挑战,本文提出了一种新的物理信息残差网络(PIResNet),用于学习嵌入在训练和测试数据中的底层物理信息,从而为不完美的数据提供符合物理规律的解决方案。在所提出的方法中,首先采用物理模态特性主导生成层来生成模态特性主导特征。然后,构建域转换层,以实现在不同运行速度条件下提取能够判别轴承故障的特征。最后,建立了一个并行双通道残差学习架构,可以自动提取轴承故障特征。使用可变运行速度和可变负载以及时变运行速度下的实验数据集进行验证,证明了PIResNet在非平稳运行条件下的优越性。
根据十三五全国旅游信息化规划,行业不断深化,旅游数字化、网格化、智能化取得明显进展,旅游公共信息服务水平显著提高。旅游信息化四大发展目标:信息服务集成化、市场营销精准化、产业运行数据化、行业管理智能化。
该白皮书不仅详细阐述了煤矿井下网络的最新网络架构、显著优势及未来发展方向,还旨在通过深化先进网络技术在煤矿领域的应用,助力煤矿行业实现网络技术的换代升级,为煤矿智能化发展注入强劲动力。
对于含多类型混合储能系统的运行优化,通常将所有设备等效为一个整体,并未考虑各储能系统的运行特性差异等因素,最终导致设备利用率低,经济运行能力差。为此,首先以最大可再生能源消纳以及最小电网交换电量为目标,构建了优化函数模型。其次,考虑到多类型储能系统在充放电动态特性、运行成本特征以及SOC设定等方面差异,提出了一种结合能量型储能SOC一致性约束的双层解耦式运行优化方法,以适应分布式能源系统中的多类型储能协同运行。最后,以某个在建的分布式可再生能源系统工业示范园区数据为基础,对所提方法进行了算例验证与分析。结果证明,所提方法在保证分布式能源系统内多个能量型储能系统充放电同步性的同时,能够对具有相同运行特性的储能系统进行聚类,有效了降低计算复杂性,完成多类型储能协调与优化,并最终促进分布式能源系统的新能源消纳。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南