近年来,中国大力发展清洁能源,不断优化能源结构,能源绿色低碳转型取得显著成效。其中,以风能为主的清洁能源成为政策发力点和重要发展趋势,尤其是在“双碳”目标和“十四五”规划的指引下,开发海上风电是中国推动可再生能源发展的重点领域。随着海上风电装机容量的逐渐增加,柔性直流输电技术已成为大规模远距离海上风电输送的主要途径。当岸上交流电网发生故障时,岸上换流站输出功率大幅度下降。然而,由于柔直系统的解耦作用,风电机组感受不到岸上的故障,输出功率全部注入柔直系统。柔直系统的输入功率大于输出功率,产生的盈余功率引起直流电压大幅度上升,若不采取措施,将对柔直系统造成极大的危害。
准确模拟大型锂离子电池(LLBs)的电化学过程,包括估计过程中的电化学状态分布,对于LLBs的设计和管理至关重要。基于二维物理的模型可以准确地描述LLB的电化学过程。然而,由于存在复杂的偏微分方程(PDE),求解模型成为一项具有挑战性的任务。本文开发了一个物理信息复合网络(PlCN)作为二维物理模型的替代模型。具体来说,PlCN由四个深度神经网络(DNN)组成,分别估计四个关键电化学状态的分布。由于PlCN的架构受到PDE特性的启发,它可以通过四个轻量级DNN实现高精度。此外,通过结合物理和数据,PlCN使用有限的数据实现了准确的估计。它甚至可以估计可能无法直接测量的电化学状态分布。MoreoverPICN提出了一种基于低频信息的预训练策略和两阶段损失平衡策略,以解决PlCN训练中可能出现的收敛失败和损失不平衡问题。PlCN是通过将物理与数据相结合来模拟LLBs电化学过程的新尝试。大量实验表明,它比最先进的模型要好。 关键词:数据、电化学过程、锂离子电池、物理学、替代模型。
对于机械系统的预测和健康管理,一项核心任务是预测机器的剩余使用寿命(RUL)。目前,具有自动特征学习的深度结构,如长短期记忆(LSTM),在RUL预测方面取得了很好的性能。然而,传统的LSTM网络只使用最后一个时间步的学习特征进行回归或分类,效率不高。此外,一些具有领域知识的手工制作的特征可能会为RUL的预测提供额外的信息。因此,将这些手工制作的特征和自动学习的特征集成到RUL预测中是非常有动力的。在这篇文章中,我们提出了一种基于注意力的深度学习框架,用于机器的RUL预测。LSTM网络用于从原始数据中学习序列特征。同时,所提出的注意力机制能够学习特征和时间步长的重要性,并为更重要的特征和时间步分配更大的权重。此外,开发了一个特征融合框架,将人工生成的特征与自动学习的特征相结合,以提高RUL预测的性能。对两个真实数据集进行了广泛的实验,实验结果表明,我们提出的方法优于现有技术。 关键词:注意力机制、特征融合手工特征、长短期记忆(LSTM)、机器剩余使用寿命(RUL)预测、预后和健康管理(PHM)。
中服云物联网平台,业界领先,功能强大
开源,一款,基于,go,语言,开发,商业级,saas,云原生,微服务,工业物联网平台,中服云工业物联网平台
一款,适用于,多个,场景,开源,工业物联网平台,中服云工业物联网平台,业界领先的工业物联网平台
设备管理体系的推进与评价对于组织来说意义重大,它就如同生产运营的坚固基石一般。在企业等各类组织的生产经营过程中,设备是不可或缺的重要部分,而设备管理体系能够全方位覆盖设备资产从设计、制造、采购、安装,到使用、维护、维修、改造乃至报废等全生命周期的各个环节。通过细致地管理这些环节,比如借助设备档案对设备的详细记录,管理人员可以更高效地开展设备维护和维修工作,有力保障生产线稳定运行。同时,随着企业发展需求的变化,还能及时对现有机器设备进行合理的改造升级与更替,确保企业生产线跟上时代步伐,快速更新技术。这一系列举措能让生产经营活动更加有序、稳定地开展,为组织的持续发展筑牢根基,避免因设备方面出现问题而导致生产停滞等不良情况的发生,是保障组织生产运营顺畅进行的关键所在。
以量子计算、量子通信、量子精密测量为代表的量子信息技术 是量子科技的重要组成部分,也是开辟未来产业新赛道、构建新质 生产力,打造创新发展新动能的重要发展方向。量子信息领域基础 研究与应用研究并重,进入科技攻关、工程研发、应用探索和产业 培育相互带动,一体化发展阶段。
没有账户,需要注册
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。
中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。
中服云作为国内领先的工业物联网平台厂商,其技术架构与功能特性高度适配火山地震监测场景的需求
人工智能的迅速发展将深刻改变人类社会生活、改变世界。为抢抓人工智能 发展的重大战略机遇,构筑我国人工智能发展的先发优势,加快建设创新型国家 和世界科技强国,按照党中央、国务院部署要求,制定本规划
:整合多模态医学数据,包括图像、文本、声音、 传感器数据和基因组、转录组、蛋白质组等多组学数据,完成 不同时间点、条件下的数据对齐,构建医学科研数据资源库。 利用数据融合模型与方法,提供跨模态标注算法和标注工具, 揭示跨模态数据之间的语义关联性,帮助分析其相互作用和整 合效果,提高诊断和分析的准确性。面向不同类型的数据,提 供计算机视觉、自然语言处理、图学习等多类算法,对多模态 数据进行特征提取、模型训练、统计分析等,以识别疾病标志 物和模式。提供科研合作平台,促进跨学科研究团队的协作, 支持将分析结果转化为临床辅助决策支持工具,辅助医生进行 更准确的诊断和治疗规划。
为抢抓人工智能发展新机遇,支持人工智能技术赋能智能终端产品,推动智能终端产业高质量跨越 式发展,加快建设国际国内领先的人工智能终端产业集聚区,按照《关于加快发展新质生产力进一步推 进战略性新兴产业集群和未来产业高质量发展的实施方案》《深圳市加快打造人工智能先锋城市行动方 案》等文件要求,结合我市实际,制定本行动计划
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南