园区已成为践行“两化融合及四化同步”的重要载体。因此,发挥信息化在资源优化配置、生产方式变革、管理创新等方面的引擎作用,建设智慧型现代园区,成为新时期园区建设及提档升级的重要任务。 伴随着各地区园区发展壮大,信息化对园区推动作用日益明显,园区信息化水平也在不断提升。信息化成为园区品牌推介的主要手段,也成为提高管理水平,提升企业运行效率有效途径。
内生+外延,工程机械龙头深耕三十余载。公司成立于 1994 年,以混凝土机械起家,通过收购普茨迈斯特、帕尔非格不断拓宽业务版图,完善产品体系,营收规模从 17 年 383 亿元提升到 22 年 808 亿元,期间 CAGR 达到 16%,23H1 公司营收、归母净利分别达 399、34 亿元,稳居行业头部水平。
大模型技术是当前AIGC技术发展的核心驱动力。从2020年GPT-3发布以来,OpenAI等国内外的科技企业和研究机构通过零样本学习( Zero-Shot Learning )、提示词工程(Prompt Engineering)、指令微调(SFT)、人类反馈强化学习(RLHF)等诸多技术创新,找到了有效使用大模型的技术范式。
公司煤炭储量丰富,资源禀赋优异,是疆煤保供的核心标的。马朗煤矿投产后公司煤炭产能高达 6000 万吨,我们预计公司煤炭销量将从 2022 年的 2670 万吨增长至 2023年 4069 万吨。
智慧物流解决方案(36页),智慧物流解决方案(36页),智慧物流解决方案(36页),智慧物流解决方案(36页)
随着社会的不断发展,建设市场的不断改进,工程体量也随之不断增长,工地环境更为复杂,对施工记忆和工艺水平提出了更高的要求。大数据、云技术、物联网及BIM等各种技术因素对建筑行业的各个环节产生了很大影响,为智慧工地的发展提供了机遇。无论是公司精细化管理的内在需求还是当代先进技术快速发展和综合应用的外在动力,建筑施工行业向更加集成统一管理、高效协同工作以及更加自动化和智能化的智慧化方向发展
双碳数字化产品双碳发展解决方案-英诺森,双碳数字化产品双碳发展解决方案-英诺森,双碳数字化产品双碳发展解决方案-英诺森
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
在工业过程监测中,长期平稳特征在表示基本统计信息方面起着重要作用。然而,基于自编码器的方法通过实现原始数据的数值近似来提取深度特征,这可能会导致隐藏的平稳信息的破坏。为了解决这个问题,本文提出了一种基于平稳特征重构的协整堆叠自编码器模型,以在模型训练过程中保持长期均衡关系。推理标准。通过重构平稳特征,所提出的网络能够保留非平稳变量之间的有益关系。最后,在两种情况下验证了所提出方法的故障检测性能。
钢包炉气精炼、钢水温度、极梯度升压;光梯度增强机;灰狼优化:SHapley加法运算
现代工业装置普遍表现出规模大、过程长、多单元协同作业的特点,这使得时空分布具有内在性,质量稳定性通常难以保证。本文提出了一种基于质量相关时空信息分析的多单元协同监控框架。在该框架中,分别从单元级和过程级分析时空属性。首先,对于每个操作单元,采用当前特征提取策略构建质量监督时空支持区域。在该策略中,时间动态特征由具有注意力机制的长短期记忆(LSTM)网络提取。同时,利用互信息核主成分分析方法提取空间特征。其次,对于全厂过程,构建了一个三阶多单元时空特征张量进行特征融合。通过张量分解位置,探索了单元之间的相互关联和过程中的质量继承,并将原始特征空间分解为几个子空间。最后,在子空间上开发了一个多单元协同监测模型,并通过贝叶斯融合给出了综合监测结果,可以对监测结果进行合理的解释。所提出的框架在实际的热轧带钢生产过程中得到了验证。
现代制造过程通常包含多个子过程,过程变量的时空特征难以提取,这给传统的质量相关故障诊断带来了重大挑战。为了解决这个问题,我们提出了一种由图注意力网络驱动的故障检测模型——集成门控递归单元规范变量分析(GATRU-CVA)。首先,利用领域专家的知识和历史数据构建子块知识图。接下来,为全局变量构建了图注意力网络(GAT)的空间特征提取器。此外,使用子块知识图将全局空间特征划分为子块,并构建相应的时间特征提取器。然后,考虑到过程动态特性,使用CVA基于时空特征对过程进行建模,并计算相应的统计数据。阈值由核密度估计器(KDE)方法确定。最后,使用热轧带钢机过程(HSMP)的实际生产数据来验证所提出的模型。结果表明,该方法对HSMP的正确监测率(CMR)为97%与其他比较故障检测方法相比。关键词:规范变量分析、故障检测、门控递归单元(GRU)、图注意力网络(GAT)知识图。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南