园区已成为践行“两化融合及四化同步”的重要载体。因此,发挥信息化在资源优化配置、生产方式变革、管理创新等方面的引擎作用,建设智慧型现代园区,成为新时期园区建设及提档升级的重要任务。 伴随着各地区园区发展壮大,信息化对园区推动作用日益明显,园区信息化水平也在不断提升。信息化成为园区品牌推介的主要手段,也成为提高管理水平,提升企业运行效率有效途径。
要大力扶持发展多种农业经营主体,落实好中央“一号文件”关于扶持发展新型农业经营主体的相关政策。要突出基地建设,选建一批农业产业化示范基地;要大力开拓市场,打造xx农产品地理标识,叫响绿色、生态、有机、安全“名片”
ChatGPT推出后不久,比尔·盖茨(Bill Gates)表示,人工智能(AI)“将彻底改变我们的生活。”人工智能的飞速发展的确令全世界印象深刻,有些人,譬如盖茨先生,宣扬其前景,而另一些人则关注其风险。金融服务业高层领导认为,人工智能既有可能为机构创造新机遇,也有可能带来新风险。一位安永与会高管表示:“虽然人工智能仍处于起步阶段,但在过去10个月内已经取得重要技术突破。这项技术具有改变金融服务业的巨大潜力。"
随着科技的飞速发展,移动互联网应用种类日益丰富,数量繁多。这些应用涵盖了生活的 方方面面,从社交娱乐、购物消费、金融理财,到教育学习、健康医疗等。在手机的方寸之间, 人们可以随时随地享受互联网带来的便捷与乐趣。
器学习就是对计算机一部分数据进行学习,然后对另外一些数据进行预测与判断。.机器学习的核心是“使用算法解析数据,从中学习,然后对新数据做出决定
智慧档案管理系统平台建设方案(18页 PDF),智慧档案管理系统平台建设方案(18页 PDF),智慧档案管理系统平台建设方案(18页 PDF)
以用工实名制系统为核心,整合环境监测 系统、监控系统、塔吊系统的智慧工地管 理系统;以用工实名制系统为核心,整合环境监测 系统、监控系统、塔吊系统的智慧工地管 理系统
年平均温度11.3℃,降水620 毫米左右。核心办公区位处两河 交汇,在秋季、冬季易发团雾、 路面结冰等状况,将一定程度 影响区域内道路通行。
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
在工业过程监测中,长期平稳特征在表示基本统计信息方面起着重要作用。然而,基于自编码器的方法通过实现原始数据的数值近似来提取深度特征,这可能会导致隐藏的平稳信息的破坏。为了解决这个问题,本文提出了一种基于平稳特征重构的协整堆叠自编码器模型,以在模型训练过程中保持长期均衡关系。推理标准。通过重构平稳特征,所提出的网络能够保留非平稳变量之间的有益关系。最后,在两种情况下验证了所提出方法的故障检测性能。
钢包炉气精炼、钢水温度、极梯度升压;光梯度增强机;灰狼优化:SHapley加法运算
现代工业装置普遍表现出规模大、过程长、多单元协同作业的特点,这使得时空分布具有内在性,质量稳定性通常难以保证。本文提出了一种基于质量相关时空信息分析的多单元协同监控框架。在该框架中,分别从单元级和过程级分析时空属性。首先,对于每个操作单元,采用当前特征提取策略构建质量监督时空支持区域。在该策略中,时间动态特征由具有注意力机制的长短期记忆(LSTM)网络提取。同时,利用互信息核主成分分析方法提取空间特征。其次,对于全厂过程,构建了一个三阶多单元时空特征张量进行特征融合。通过张量分解位置,探索了单元之间的相互关联和过程中的质量继承,并将原始特征空间分解为几个子空间。最后,在子空间上开发了一个多单元协同监测模型,并通过贝叶斯融合给出了综合监测结果,可以对监测结果进行合理的解释。所提出的框架在实际的热轧带钢生产过程中得到了验证。
现代制造过程通常包含多个子过程,过程变量的时空特征难以提取,这给传统的质量相关故障诊断带来了重大挑战。为了解决这个问题,我们提出了一种由图注意力网络驱动的故障检测模型——集成门控递归单元规范变量分析(GATRU-CVA)。首先,利用领域专家的知识和历史数据构建子块知识图。接下来,为全局变量构建了图注意力网络(GAT)的空间特征提取器。此外,使用子块知识图将全局空间特征划分为子块,并构建相应的时间特征提取器。然后,考虑到过程动态特性,使用CVA基于时空特征对过程进行建模,并计算相应的统计数据。阈值由核密度估计器(KDE)方法确定。最后,使用热轧带钢机过程(HSMP)的实际生产数据来验证所提出的模型。结果表明,该方法对HSMP的正确监测率(CMR)为97%与其他比较故障检测方法相比。关键词:规范变量分析、故障检测、门控递归单元(GRU)、图注意力网络(GAT)知识图。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南