企业在信息化过程中,建立了多个业务系统,系统之间相互独立缺乏整合,形成了信息孤岛,数据查询难度大、速度慢。主要通过定制报表进行业务分析,数据很多,但报表之间缺乏关联和对照关系,缺乏综合分析深入,用户不能及时准确的获取数据的含义和趋势。
系统设计一次定型,投资需一步到位,密度设计中等,很难增加,初期运营效率低,真正的模块化数据中心,制冷、供电及管理系统都应实现区域化、模块化、互不干扰,可独立运行,无共用部分,例如静压箱、水管、电池组等。
智能物流是基于互联网、物联网,通过集成自动识别技术、数据仓库和数据挖掘技术、人工智能技术,让物流系统能够拥有人的“智慧”拥有思维、感知、学习、推理判断和自行解决物流中某些问题的能力。
经历了半个多世纪的发展,AI已经走出实验室,离开棋盘,掀起了智能化的浪潮,通过智能客服、智能医生、智能家电、智慧城市、智慧安防、机器人、智能投研等服务场景在诸多行业有了深入而广泛的应用。国际咨询公司埃森哲研究了AI在12个发达经济体中所产生的影响,认为AI能够将劳动生产率提高40%;到2035年,AI可以使年度经济增长率提高一倍。
谷歌的深度学习在AI芯片中找到了一条关键路径 一年前,ZDNet 与谷歌大脑总监 Jeff Dean谈到 了该公司如何使用人工智能来推进定制芯片的内部开发,从而加快软件开发。Dean 指出,在有些情况下,与人类相比,人工智能的深度学习能够更好地决定如何在芯片中布置电路。
vivo AI 研究院为了解决统一高性能训练环境、大规模分布式训练、计算资源的高效利用调度等痛点,着手建设 AI 计算平台。经过两年的持续迭代,平台建设和落地取得了很大进展,成为 vivo AI 领域的核心基础平台。平台从当初服务深度学习训练为主,到现在演进成包含 VTraining、VServing、VContainer 三大模块,对外提供模型训练、模型推理和容器化能力。VContainer 是计算平台的底座,是基于 Kubernetes 构建的容器平台,具备资源调度、弹性伸缩、零一混部等核心能力。VContainer 的容器集群有上千个节点,拥有超过 100PFLOPS 的 GPU 算力。集群里同时运行着上千个 VTraining 的训练任务和上百个 VServing 的推理服务。本文主要分享了 VContainer 的监控高可用方案的选型和部署实践,以及各种踩坑经验。
人工智能(AI)改善制造业运营的三种方式 在制造行业中,工业4.0(Industry 4.0)不仅仅是一个流行词,它已成为一种新的现实。新型冠状病毒的爆发加速了这一现实的到来。在新型冠状病毒爆发的前三个月中,企业和消费者都适应了网络世界,数字技术的发展速度相当于十年间的发展速度。
从智能到智慧——我们如何让AI进入生活? 在人类所有的造物里,这是第一次,造物具备了智能。甚至在某些专业领域,人工智能已经超越了它的创造者。 以致于凯文.凯利感叹:学会向我们的创造物低头。这其中,憧憬者有之,警惕者亦有之。
没有账户,需要注册
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。
过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。
近年来,AI?快速发展。算力、存力、运力以及模型能力的协同发展水平成为衡量地区数字竞争力的关键。算力支撑数据处理与计算,存力保障数据的高效存储与调用,运力保障数据的跨域传输,模型能力则深度释放算力在各场景的应用效能。综合算力是指以算力为核心、存力为基础、运力为纽带、模力为赋能、环境为发展保障的多维度协同能力体系,是衡量数字经济发展的核心生产力指标。如何更科学评估我国综合算力发展现状,全面把握区域产业短板与优势,成为推动数字经济高质量发展的重要命题。
2022年5月,全球首款全自动生成的32位RISC-VCPU"启蒙1号"由中国科学院计算技术研究所利用AI技术成功设计。AI的利用,将生产周期从数月降至5小时生成400万逻辑门,效率提升至1/1000,标志着芯片设计进入智能化时代
在新一轮科技革命和产业变革深入推进的背景下,高质量数据集已成为支撑人工智能发展和行业智能化转型的关键基础。近年来,国务院国资委围绕实施央企"人工智能+"行动和产业焕新行动,将高质量数据集建设作为提升中央企业智能化能力和核心竞争力的重要抓手,通过专题部署、示范发布和平台建设等方式,持续推动数据资源向可用、可管、可共享的数据资产转化。与
近年来,国家高度重视数据产业发展,将数据列为生产要素,并持续强化数据标准化工作。自2021年起,《国家标准化发展纲要》《“十四五”数字经济发展规划》《关于构建数据基础制度更好发挥数据要素作用的意见》等多项政策文件陆续出台,大力推动了公共数据、企业数据、个人数据的标准体系建设。2024年,国家发展改革委、国家数据
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南