vivo AI计算平台的监控高可用方案

vivo AI 研究院为了解决统一高性能训练环境、大规模分布式训练、计算资源的高效利用调度等痛点,着手建设 AI 计算平台。经过两年的持续迭代,平台建设和落地取得了很大进展,成为 vivo AI 领域的核心基础平台。平台从当初服务深度学习训练为主,到现在演进成包含 VTraining、VServing、VContainer 三大模块,对外提供模型训练、模型推理和容器化能力。VContainer 是计算平台的底座,是基于 Kubernetes 构建的容器平台,具备资源调度、弹性伸缩、零一混部等核心能力。VContainer 的容器集群有上千个节点,拥有超过 100PFLOPS 的 GPU 算力。集群里同时运行着上千个 VTraining 的训练任务和上百个 VServing 的推理服务。本文主要分享了 VContainer 的监控高可用方案的选型和部署实践,以及各种踩坑经验。

  • 2021-04-20
  • 收藏0
  • 阅读223
  • 下载0
  • 9页
  • pdf
  • 592.41M

评价

评分 :
   *