【ASC】滑动窗口双通道CNN(SWDC-CNN):一种同步预测水泥煅烧过程煤耗和耗电量的新方法
作为加工业的代表,水泥行业消耗了大量的煤电资源。这主要是由于水泥行业内部粗生产和各能耗指标独立统计造成的能源调度不合理。能耗的同步精确预测可以为生产控制过程和能源调度提供更有效的方案。然而,由于生产的时间延迟、变量耦合和不确定性,很难同步预测多个指标。本文提出了一种结合滑动窗口和双通道卷积神经网络(SWDC-CNN)的数据驱动预测方法,以实现未来5分钟的煤耗和电力消耗同步预测。滑动窗口方法用于提取时间序列数据的时变延迟特性,以克服其对能耗预测的影响。通过设计双通道结构,减少了弱相关变量之间冗余参数对能量预测的影响。我们在山西省的实际水泥生产数据上试验并比较了支持向量机(SVM)、极限梯度提升(XGBoost)、递归神经网络(RNN)、长短期记忆(LSTM)和门递归单元(GRU)等优秀模型。实验结果表明,所提出的SWDC-CNN模型性能良好,预测精度最高,能够满足预期要求。