图神经网络(GNN)是一种用于学习图结构数据的深度学习框架。通过制定针对节点和边的策略,GNN能够将图数据转化为规范形式,并输入到神经网络中进行训练。在节点分类、传播边信息和图聚类等任务上,GNN表现出卓越的性能。
机械故障诊断干货 | (电机、减速机、风机)振动传感器部署指南,附图详解!
继上次推荐的航空发动机轴承数据集,今天给大家推荐一个风力发电机行星齿轮箱公开数据集,该数据集是继东南大学行星齿轮箱数据集的第2个行星齿轮箱数据集,该数据集有5种健康状态、8个转速,还考虑了不同安装效果,诊断起来更具有挑战性。该数据集是2023年公开的,因此目前基于该数据集的论文不是很多,小伙伴们赶紧用起来吧!对于研究风力发电机故障诊断的小伙伴们,再也不用担心写论文找不到数据啦。
卷积神经网络(Convolutional Neural Networks),也被称为convet,是一种特殊的神经网络,用于处理具有已知网格状拓扑的数据,比如时间序列数据(1D)或图像(2D)。
假设检验是一种推断性统计方法。 它常常被用来基于可用证据做出知情决策。 在其核心,假设检验涉及通过评估样本数据来评估一个提出假设的有效性。 这一过程通常始于制定两个不同的假设:零假设(H0)和备择假设(H1)。
您是否熟悉统计学中使用的不同分布?
深度学习训练里,神经网络的超参数特别多,调这些参数得花好多算力和时间。而且,不同的超参数有时候差别特别大。所以,调整超参数被大家戏称为“玄学”或“炼丹学”。
拥有一种可靠的方法来预测和预测未来事件一直是人类的愿望。在数字时代,我们拥有丰富的信息,尤其是时间序列数据。
没有账户,需要注册
163页化工动设备讲义(PPT),163页化工动设备讲义(PPT),163页化工动设备讲义(PPT)
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
滨海蓝碳 红树林 盐沼 海草床碳储量和碳排放因子评估方法 (陈鹭真,卢伟志,林光辉译),滨海蓝碳 红树林 盐沼 海草床碳储量和碳排放因子评估方法 (陈鹭真,卢伟志,林光辉译)
北京云纵技术:智慧食堂解决方案32页,北京云纵技术:智慧食堂解决方案32页,北京云纵技术:智慧食堂解决方案32页北京云纵技术:智慧食堂解决方案32页
北京英博:电力电子再进化,工商储能再赋能,北京英博:电力电子再进化,工商储能再赋能,北京英博:电力电子再进化,工商储能再赋能
大模型是指通过在海量数据上依托强大算力资源进行训练后能完成大量不同下游任务的模型。大模型以其在模型精度和泛化能力等多个指标上超越传统AI模型的表现,以及赋能千行百业的巨大潜力,成为当今世界各国人工智能技术发展的核心方向。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南