传统的不确定性量化( uncertainty quantification,UQ )方法在处理高维问题时会遭遇维数灾难,解决这一挑战的一种方法是利用深度神经网络 ( deep neural networks,DNNs ) 强大的近似能力。然而,传统的 DNNs 通常需要大量高保真度 ( high-fidelity,HF) 数据训练来确保精确的预测,但由于计算或实验成本限制,此类数据可得性有限。为了减少训练费用,本研究引入了多保真度深度神经网络 ( multi-fidelity deep neural networks,MF?DNNs ),其中构建了一个子网络来同时捕获高保真度和低保真度 ( low-fidelity,LF ) 数据之间的线性和非线性相关性。MF?DNNs 的有效性最初通过准确近似各种基准函数来证明。随后,考虑输入不确定性的均匀分布或高斯分布,首次使用开发的MF? DNNs来模拟1维、32维和100维环境中的偶然不确定性传播,UQ 结果证实,MF? DNNs 能够熟练地预测兴趣参量 ( quantities of interest,QoI ) 的概率密度分布及其统计矩,而不会显著降低准确性。此外,MF?DNN 被用于模拟飞机推进系统内部的物理流动,同时考虑源自实验测量误差的偶然不确定性,基于二维欧拉流场和少量实验数据点,利用MF-DNNs对等熵马赫数分布进行了精确预测。总之,提出的 MF?DNN 框架在解决实际工程应用中的 UQ 和稳健优化挑战方面表现出巨大的潜力,尤其是在处理多保真度数据源时。
飞机发动机性能的下降需要实时监控。因此,本文提出了一种实时性能退化监测方法,包括用于原始发动机性能预测的基线状态(BLS)模型和用于持续发动机性能预测的实时模型。两种模型均基于LSTM,并与发动机物理拓扑集成;为了抵消模型训练期间不同发动机状态之间的数据分布差异,本文提出了一种数据增强方法。在案例验证中,采用了发动机运行600小时的数据,以推力作为目标监测参数。初始50小时数据集涵盖了随后550小时的整个工况范围,并作为两个模型的训练数据集。试验结果表面,BLS模型在最初50小时内实现了平均绝对相对误差 (MARE)低于0.5%,最大绝对相对误差(Emax)低于8%。同时,实时模型在接下来的550小时内的MARE低于0.7%,Emax低于10%。本研究在与传统方法的实时推力衰减的比较中凸显了该方法的可行性和优势。
当发电机转速上升或负载减小时,发电机电压会升高而超过其额定值。此时电磁铁线圈中的电流会立即增大,作用在衔铁上的电磁力会随之增大,衔铁向电磁铁方向移动,炭片之间的压力便减小,炭柱电阻逐渐增大,发电机励磁电流逐渐减小,发电机电压逐渐下降。当炭柱电阻的改变所引起的电压变化量,恰好抵消了由于转速和负载改变所引起的电压变化量时,发电机电压就恢复至额定值。经过这一变化后,作用在衔铁上的三个力又重新平衡,衔铁停在新的平衡位置:调压器又处于新的平衡状态。
2020 年 3 月 4 日,中央政治局常委会指出,“加快 5G 网络、数据中心等新型基础设施建设进度”。以 5G 基建、特高压、城际高速铁路和城市轨道交通、新能源汽车充电桩、大数据中心、人工智能、工业互联网为代表的“新基建”项目成为各地投资的重点。
现代企业制度是适应市场经济体制环境的规范建立的完善的企业法人制度;是以有限责任为核心,以产权关系清晰、权利职责明确、政企职能独立、管理方法科学为主要内容的企业制度。
提出了一种基于主、从记忆空间模型的时空上下文跟踪算法。该算法将人脑记忆机制融入STC算法的时空上下文模板更新过程,通过构建主、从记忆空间,形成基于记忆的模板更新策略。同时,通过计算置信图多峰值点求取目标位置,提高目标跟踪精度。实验结果表明,所提出的算法可解决目标被遮挡、姿态突变、短暂消失后重现等条件下的跟踪精度下降问题,有利于实现鲁棒性、高精度运动目标跟踪。
大多数沉静在“工业时代"的人们,还没有来得及搞清楚“信息时代"到底意味着什么;喊着“互联网思维”的人多了;在传统企业质疑“互联网思维”到底有多大威力的时候;"大数据时代"来了;“大数据"被质疑很难落地的时候,大家又在热谈德国的“工业4.0"了。
白皮书分析了能源行业机遇与挑战并存的发展趋势,在业内首次提出智慧能源生态体系和智慧能源架构,就智慧能源的创新应用场景、建设实施路径和方法,以及未来发展的重点措施做了系统梳理。当下,我国能源互联网的建设整体处于信息化向智能化迈进过程,智能化技术将成为能源数字化转型关键。
没有账户,需要注册
国内重点工业物联网平台四类厂商分类及选型指南
工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。
当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。
首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,
算力互联网的发展和演进是一个持续不断的过程,编制组将密切关注国内外算力互联网的发展动态,积极听取产业界的意见与建议,不断完善和优化算力互联网体系架构的研究内容,适时修订并发布报告的新版本,以更好地推动算力互联网发展。
为更好地推动数据智能服务产业发展,本报告从数据智能服务产业定义、要素、载体、产业链、创新模式等方面开展研究工作。第一部分数据智能服务产业概念界定、内涵特征以及全球趋势;第二部分分析数据智能服务产业的核心关键要素;第三部分阐述数据智能服务产业链结构以及产业生态图谱;第四部分阐述数据智能服务的产业载体,第五部分总结了数据智能服务产业的创新模式,最后根据上述研究,从技术、应用、产业、安全等四个方面分析趋势,为我国数据智能服务产业发展提供参考。
通过深度学习嵌入算法可以对离散序列数据一自然语言文本进行计算分析。 主要应用方向是文本信息抽取,包括文本分类、关键实体识别、实体之间关系识别以及事件识别。
利用人与大数据技术,结合专业的中医疾病、证候/治则知识库、疾病知识图谱等,研发了医用智能处方椎荐系统。它能够无缝植入到医院现有的HIS和医生工作中,不改变医生工作流程,输入患者信息、证候、主诉等信息智能推荐方剂和备用饮片药,医生进行加减化裁即可成方,节省医生诊疗时间,提高工作效率。
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南