中华人民共和国石油天然气行业标准,石油工业标准化技术委员会,煤焦油瓷漆覆盖层 瓷漆 阴极剥离试验
中华人民共和国石油天然气行业标准,石油工业标准化技术委员会,石油天然气工程制图标准
中华人民共和国石油天然气行业标准,石油工业标准化技术委员会,石油钻采装备用液力变速器
GB 50605-2010-T 住宅区和住宅建筑内通信设施工程设计规范
中华人民共和国石油天然气行业标准,石油工业标准化技术委员会,原油库固定式消防系统运行规范
GB 50673-2011 有色金属冶炼厂电力设计规范
钻井取心工具分类及型号表示方法中华人民共和国石油天然气行业标准,石油工业标准化技术委员会
GB 50762-2012 秸秆发电厂设计规范
没有账户,需要注册
本工程建筑为办公生产大楼,由地上32层、地下3层组成;其中1-5层为裙楼、6-32层为塔楼。地下1-3层含停车场、人防、设备用房;地上部分:主楼一层含公共大厅;5为设备转换层,11、22层为避难层,33层设置机房;6-10层、12-21层、23-32层为办公生产用房。
随着能源互联网的发展,能源系统智能化特征越来越突出,能 源开发、生产、传输、存储、消费 全过程的智能化水平快速提升,所 涉及的设备和系统将数以亿计,在 规划和运行过程中将产生海量数据, 且结构复杂、种类繁多、因实时性 要求高而快速增长。这些数据贯穿 着能源互联网各个环节,蕴含着巨 大的价值。
技术开发的迭代推进和技术应用的规模化积累,在推进数字技术不断取得新突破的同时,也使数字技术变得更加成熟和可靠。数字技术的先进性、复杂性、集成性与数字化系统覆盖面更广、界面更直观、操作更简单同步发展。人们能够随时随地访问功能越来越强大的数字化系统。
本工程为单缆无源系统,将为大楼提供全面无线通信信号覆盖,所设计的室内覆盖系统是为智能化大楼室内移动通讯信号覆盖的需要而提出的
对于机械系统的预测和健康管理,一项核心任务是预测机器的剩余使用寿命(RUL)。目前,具有自动特征学习的深度结构,如长短期记忆(LSTM),在RUL预测方面取得了很好的性能。然而,传统的LSTM网络只使用最后一个时间步的学习特征进行回归或分类,效率不高。此外,一些具有领域知识的手工制作的特征可能会为RUL的预测提供额外的信息。因此,将这些手工制作的特征和自动学习的特征集成到RUL预测中是非常有动力的。在这篇文章中,我们提出了一种基于注意力的深度学习框架,用于机器的RUL预测。LSTM网络用于从原始数据中学习序列特征。同时,所提出的注意力机制能够学习特征和时间步长的重要性,并为更重要的特征和时间步分配更大的权重。此外,开发了一个特征融合框架,将人工生成的特征与自动学习的特征相结合,以提高RUL预测的性能。对两个真实数据集进行了广泛的实验,实验结果表明,我们提出的方法优于现有技术。 关键词:注意力机制、特征融合手工特征、长短期记忆(LSTM)、机器剩余使用寿命(RUL)预测、预后和健康管理(PHM)。
准确模拟大型锂离子电池(LLBs)的电化学过程,包括估计过程中的电化学状态分布,对于LLBs的设计和管理至关重要。基于二维物理的模型可以准确地描述LLB的电化学过程。然而,由于存在复杂的偏微分方程(PDE),求解模型成为一项具有挑战性的任务。本文开发了一个物理信息复合网络(PlCN)作为二维物理模型的替代模型。具体来说,PlCN由四个深度神经网络(DNN)组成,分别估计四个关键电化学状态的分布。由于PlCN的架构受到PDE特性的启发,它可以通过四个轻量级DNN实现高精度。此外,通过结合物理和数据,PlCN使用有限的数据实现了准确的估计。它甚至可以估计可能无法直接测量的电化学状态分布。MoreoverPICN提出了一种基于低频信息的预训练策略和两阶段损失平衡策略,以解决PlCN训练中可能出现的收敛失败和损失不平衡问题。PlCN是通过将物理与数据相结合来模拟LLBs电化学过程的新尝试。大量实验表明,它比最先进的模型要好。 关键词:数据、电化学过程、锂离子电池、物理学、替代模型。
中服云物联网平台,业界领先,功能强大
开源,一款,基于,go,语言,开发,商业级,saas,云原生,微服务,工业物联网平台,中服云工业物联网平台
扫码咨询
或
客服咨询
用手机扫二维码
复制当前地址
方案库赚钱指南