第29章 多元分析

多元分析(multivariate analyses)是多变量的统计分析方法,是数理统计中应用广 泛的一个重要分支,其内容庞杂,视角独特,方法多样,深受工程技术人员的青睐和广 泛使用,并在使用中不断完善和创新。由于变量的相关性,不能简单地把每个变量的结 果进行汇总,这是多变量统计分析的基本出发点。 §1 聚类分析 将认识对象进行分类是人类认识世界的一种重要方法,比如有关世界的时间进程 的研究,就形成了历史学,也有关世界空间地域的研究,则形成了地理学。又如在生物 学中,为了研究生物的演变,需要对生物进行分类,生物学家根据各种生物的特征,将 它们归属于不同的界、门、纲、目、科、属、种之中。事实上,分门别类地对事物进行 研究,要远比在一个混杂多变的集合中更清晰、明了和细致,这是因为同一类事物会具 有更多的近似特性。在企业的经营管理中,为了确定其目标市场,首先要进行市场细分。 因为无论一个企业多么庞大和成功,它也无法满足整个市场的各种需求。而市场细分, 可以帮助企业找到适合自己特色,并使企业具有竞争力的分市场,将其作为自己的重点 开发目标。 通常,人们可以凭经验和专业知识来实现分类。而聚类分析(cluster analyses)作 为一种定量方法,将从数据分析的角度,给出一个更准确、细致的分类工具。 1.1 相似性度量 1.1.1 样本的相似性度量 要用数量化的方法对事物进行分类,就必须用数量化的方法描述事物之间的相似 程度。一个事物常常需要用多个变量来刻画。如果对于一群有待分类的样本点需用 p 个 变量描述,则每个样本点可以看成是 Rp 空间中的一个点。因此,很自然地想到可以用 距离来度量样本点间的相似程度。 记Ω 是样本点集,距离 d(?,?) 是Ω×Ω → R

  • 2021-10-31
  • 阅读206
  • 下载0
  • 88页
  • pdf

第22章 模糊数学模型

1 模糊数学的基本概念 1.1 模糊数学简介 1965 年,美国著名计算机与控制专家查德(L.A.Zadeh)教授提出了模糊的概念,并 在国际期刊《InformationandControl》并发表了第一篇用数学方法研究模糊现象的论文 “Fuzzy Sets”(模糊集合),开创了模糊数学的新领域。 模糊是指客观事物差异的中间过渡中的“不分明性”或“亦此亦彼性”。如高个子 与矮个子、年轻人与老年人、热水与凉水、环境污染严重与不严重等。在决策中,也有 这种模糊的现象,如选举一个好干部,但怎样才算一个好干部?好干部与不好干部之间 没有绝对分明和固定不变的界限。这些现象很难用经典的数学来描述。 模糊数学就是用数学方法研究与处理模糊现象的数学。它作为一门崭新的学科,它 是继经典数学、统计数学之后发展起来的一个新的数学学科。经过短暂的沉默和争议之 后,迅猛的发展起来了,而且应用越来越广泛。如今的模糊数学的应用已经遍及理、工、 农、医及社会科学的各个领域,充分的表现了它强大的生命力和渗透力。 统计数学是将数学的应用范围从确定性的领域扩大到了不确定性的领域,即从必然 现象到偶然现象,而模糊数学则是把数学的应用范围从确定领域扩大到了模糊领域,即 从精确现象到模糊现象。 实际中,我们处理现实的数学模型可以分成三大类:第一类是确定性数学模型,即 模型的背景具有确定性,对象之间具有必然的关系。第二类是随机性的数学模型,即模 型的背景具有随机性和偶然性。第三类是模糊性模型,即模型的背景及关系具有模糊性

  • 2021-10-30
  • 阅读205
  • 下载0
  • 52页
  • pdf