数理统计研究的对象是受随机因素影响的数据,以下数理统计就简称统计,统计是 以概率论为基础的一门应用学科。 数据样本少则几个,多则成千上万,人们希望能用少数几个包含其最多相关信息的 数值来体现数据样本总体的规律。描述性统计就是搜集、整理、加工和分析统计数据, 使之系统化、条理化,以显示出数据资料的趋势、特征和数量关系。它是统计推断的基 础,实用性较强,在统计工作中经常使用。 面对一批数据如何进行描述与分析,需要掌握参数估计和假设检验这两个数理统计 的最基本方法。 我们将用 Matlab 的统计工具箱(Statistics Toolbox)来实现数据的统计描述和分析。 §1 统计的基本概念 1.1 总体和样本 总体是人们研究对象的全体,又称母体,如工厂一天生产的全部产品(按合格品及 废品分类),学校全体学生的身高。 总体中的每一个基本单位称为个体,个体的特征用一个变量(如 x )来表示,如一 件产品是合格品记 x = 0 ,是废品记 x = 1;一个身高 170(cm)的学生记 x = 170。 从总体中随机产生的若干个个体的集合称为样本,或子样,如n 件产品,100 名学 生的身高,或者一根轴直径的 10 次测量。实际上这就是从总体中随机取得的一批数据, 不妨记作 x1 , x2 ,L, xn ,n 称为样本容量。 简单地说,统计的任务是由样本推断总体。 1.2 频数表和直方图 一组数据(样本)往往是杂乱无章的,做出它的频数表和直方图,可以看作是对这 组数据的一个初步整理和直观描述。 将数据的取值范围划分为若干个区间,然后统计这组数据在每个区间中出现的次 数,称为频数,由此得到一个频数表。以数据的取值为横坐标,频数为纵坐标,画出一 个阶梯形的图,称为直方图,或频数分布图。 若样本容量不大,能够手工做出频数表和直方图,当样本容量较大时则可以借助 Matlab 这样的软件了。让我们以下面的例子为例,介绍频数表和直方图的作法。 例 1 学生的身高和体重 学校随机抽取 100 名学生,测量他们的身高和体重,所得数据如表