【AppliedEnergy】一种具有准确性和可解释性的模糊时间序列风力发电预测模型
考虑到当前对风速预测模型的可解释性和有效性的研究,本研究提出了一种新的动态非平稳模糊时间序列预测模型。该模型旨在有效提高预测精度,解决可解释性低和数据预处理过多的问题。与现有的主流风速预测混合系统不同,该模型几乎为每个预测步骤提供了详细的解释,并消除了繁琐的数据预处理步骤的需要。为了提高所提出模型的预测精度,本研究结合了非平稳集,以克服模糊时间序列在适应长期变化方面的局限性。所开发的算法SFTSM动态调整模糊时间序列预测,以有效应对长期预测挑战。此外,本研究引入了人工蜂鸟算法的增强版本,称为SLG-AHA,以进一步提高模糊时间序列预测的准确性和稳定性。利用中国山东蓬莱风电场的数据进行的实验结果验证了该模型的有效性,显示了其优越的预测精度和稳定性。