• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

PPT分享|李德仁院士:论时空智能与数字孪生智慧城市

PPT分享|李德仁院士:论时空智能与数字孪生智慧城市

  • 2024-08-30
  • 阅读403

【IEEETNNLS】基于轻量级组Transformer的边缘智能时间序列约简网络及其在工业RUL预测中的应用

最近,基于深度学习的模型,如transformer,由于其强大的表示能力,在工业剩余使用寿命(RUL)预测方面取得了显著的性能。在许多工业实践中,RUL预测算法被部署在边缘设备上进行实时响应。然而,深度学习模型的高计算成本使其难以满足边缘智能的要求。本文提出了一种具有多层次时间序列缩减的轻量级组Transformer(GTMRNet)来缓解这个问题。与计算所有时间序列的大多数现有RUL方法不同,GT MRNet可以自适应地选择必要的时间步长来计算RUL。首先,构建了一个轻量级的组Transformer,通过使用具有显著小波参数的组线性变换来提取特征。然后,提出了一种时间序列缩减策略,以自适应地过滤掉每一层不重要的时间步长。最后,开发了一种多层次学习机制,以进一步稳定时间序列缩减的性能。在真实世界条件数据集上的广泛实验结果表明,所提出的方法可以在不牺牲精度的情况下显著减少高达74.7%的参数和91.8%的计算成本

  • 2024-08-30
  • 阅读326

变工况条件下三相异步电机匝间短路故障诊断

针对三相异步电机匝间短路故障在不同工况下数据分布不一致带来的泛化识别准确率下降的问题,提出了一种基于残差-自注意力网络的迁移学习方法,通过在残差网络中嵌入自注意力机制实现特征强化并利用源域数据进行模型训练,然后利用迁移学习的微调策略使得模型能更好地适应目标域的特征分布,以此来增加模型在目标域数据中的适应性能力。

  • 2024-08-30
  • 阅读179

基于多通道融合的滚动轴承剩余寿命预测

针对工业生产中滚动轴承剩余使用寿命(RUL)预测任务中数据挖掘不足导致预测精度低的问题,提出了一种多通道融合的滚动轴承剩余寿命预测方法。

  • 2024-08-30
  • 阅读203

基于混合注意力的多小波系数融合滚动轴承剩余寿命预测方法

小波变换是一种评估非平稳信号的时频分析方法,有助于表征设备在长时间使用过程中的退化。然而,单一的小波基函数很难适用于所有的周期瞬态波形。因此,本研究提出了一种基于混合注意力的多小波系数融合方法来评估轴承的剩余使用寿命。该方法首先利用多个小波得到原始信号的特性,然后将分解后的各个频带组织成二维映射;其次,设计了一种基于注意力的混合卷积长短期记忆网络(HA-ConvLSTM),自适应地对小波系数通道进行加权。学习到的特征被多层感知器用于评估剩余寿命(RUL)。最后,在PHM2012滚动轴承数据集上进行了测试,验证了所提方法的有效性。总体而言,该方法在性能指标上优于以前的方法,可选择性地解决周期瞬态波形的小波基函数匹配问题。

  • 2024-08-30
  • 阅读208

一种全新滚动轴承局部缺陷扩展动态更新和实时映射的数字孪生模型

轴承局部缺陷扩展的研究对轴承健康监测和管理具有重要意义。然而,滚动轴承的局部缺陷尺寸难以实时监测。为了解决这个问题,本文提出了一种新的数字孪生(digital twin, DT)模型,用于滚动轴承局部缺陷扩展的动态更新和实时映射。新的数字孪生模型将机理模型和实时传感器数据相结合,而不是像传统的数字孪生模型那样仅依赖于测量数据。通过这种方式,可以利用新的数字孪生模型直接映射整个生命周期的缺陷尺寸。使用XJTU-SY轴承数据集评估所建立的全新的数字孪生模型,结果表明,该数字孪生模型可以准确地表征滚动轴承全寿命周期内的局部缺陷扩展。

  • 2024-08-30
  • 阅读241

根据电气特征对感应电机中的机械故障进行状态监测:不同技术的回顾

电机的状态监测是一个越来越重要的环节,因为容错系统在许多应用中已成为强制性的。就电气驱动而言,机械故障(不平衡、齿轮和轴承)的比例非常高。机械故障检测通常基于振动信号,这是一种强大而有效的技术,不过具有一定的成本和入侵性。近年来,人们已经研究了许多理论和基于信号的方法,用于通过电机信号对机械故障进行早期诊断。本文将回顾机械故障状态监测的方法,特别参考基于电信号的方法。

  • 2024-08-30
  • 阅读143

用于工业设备剩余使用寿命预测的预训练增强无监督对比域自适应摘要

工业智能的一项重要任务是准确预测工业设备的剩余使用寿命(RUl),基于数据驱动方法的RUl预测取得了巨大进展。然而,这些方法在很大程度上依赖于模型的数据表示能力和数据分布的一致性假设。在实际的工业环境中,由于不同的工作条件,工业时间序列数据表现出高维、动态和噪声的特征,这往往导致训练模型从一个环境到类似但未标记的新环境的无效转移。为了解决上述问题,本文首先设计了一个双并行时频特征提取网络,用于提取具有不同维度和重要性水平的有效时间序列特征。然后,提出了一种增强的预训练框架,该框架采用相似性对比学习来挖掘工业时间序列数据中的潜在表示信息。最后,提出了基于矩对比对抗学习的领域自适应方法,该方法在对抗学习领域不变特征的过程中保留了目标领域特有的结构信息,减轻了负迁移效应。在两个广泛认可的工业基准数据集上进行了一系列严格的实验,重点关注跨领域场景。结果表明,我们的方法在工业跨领域预测场景中取得了最先进的性能。

  • 2024-08-30
  • 阅读194
上一页 1 …… 8889909192939495969798 …… 2876 下一页 共 23002 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

2025年车路云一体化系统云控基础平台功能场景参考架构报告2.0

汽车智能化网联化融合发展已经成为全球政府、产业界的发展共识,各国通过升级政策法规、推动测试示范、加速创新应用等方式推动智能网联汽车产业发展。2024年1月,我国启动智能网联汽车“车路云一体化”应用试点,推动车路云一体化从技术验证迈向规模化应用。

  • 阅读121
  • 下载2

2025年中国新锐品牌全球成长白皮书

过去十年,中国消费市场的高速迭代催生了一批极具活力的新锐品牌。它们凭借对消费趋 势的敏锐洞察、柔性灵活的供应链体系以及成熟的数字化运营能力,在国内细分市场中迅 速崛起,创造了一个又一个“爆款神话”。

  • 阅读103
  • 下载2

中服云多模态工业物联网平台介绍

中服云作为国内著名的专业工业物联网平台系列产品提供商,历经十余年深耕发展,已构建起成熟的全系列多层次产品体系,精准适配不同行业、不同规模用户的差异化需求。凭借在工业数据采集、边缘计算、人工智能、数字孪生等领域的深厚技术积累与持续创新,中服云已为海量工业企业提供了稳定可靠的数字化转型解决方案。平台支持云端SaaS在线部署与用户现场私有化部署两种模式,既满足中小企业轻量化、低成本的在线使用需求,也保障大型企业对数据安全、定制化服务的高标准要求。

  • 阅读112
  • 下载0

中服云工业物联网平台数字孪生版技术原理与功能介绍

中服云数字孪生平台以物联网平台+数据中台为坚实基础,以2D/3D/GIS为核心展示形式,致力于打造一个从设备原始数据到孪生应用落地的一站式数智化平台。

  • 阅读160
  • 下载5

最新上线

人工智能赋能教育高质量发展

从知识传授者到引导者:知识哪里获取、如何获取、如何应用AIGC技术使教师从传统的知识传授者转变为学习引导者,更多地关注学生的个性化学习需求。

  • 阅读19
  • 下载1

2025年度低空经济投资策略

市场担心十四五期间国内无人机采购费用增速不及预期。我们认为:无人机是未来战争关键环节,当前我国军用无人机装备处于起步阶段。我们预计十四五未期我国军用无人机采购费用有望快速增加。

  • 阅读27
  • 下载0

数字档案馆标准建设方案

XX数字档案馆项目实施的过程中,将涉及到档案馆多个职能部门、多个立档单位及参与项目建设的其他单位,档案馆应建立力量强大、耶责明晰的项目建设和管理杌构,确保项目实施过程中冬个环节之间能够有条不紊的协调工作,将项目实施风险控制在最低程度。

  • 阅读39
  • 下载0

智慧物流园区信息化趋势

区别于传统消防联网模式,在符合GB50440要求的同时,将互联网思维融入消防信息化管理,将离散在园区各个消防设施实时状态信息有效整合在统一系统上。

  • 阅读81
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南