基于混合曲面造型的CAD模型修复、特征简化与网格生成算法

前处理是复杂问题数值模拟的主要性能瓶颈,涉及大量人工干预,其效率严重依赖于用户经验。可靠高效的自动前处理算法是提高数值模拟效率和精度的关键。前处理研究主要包含2项内容:网格生成和面向网格生成的CAD模型处理。进一步细分,CAD模型处理包括模型修复和特征简化。模型修复算法负责将存在“错误”的“脏”几何转换为满足网格生成要求的“干净”几何;特征简化在模型修复之后进行,负责消除不必要的设计细节,以得到性价比更高的网格模型。自动网格生成的研究已取得很大进步。相比而言,自动CAD模型处理的研究虽也受到持续的关注,但其研究现状和实际需求仍有很大差距。数值模拟中,模型表面是几何错误和几何特征最为集中的区域,模型处理后紧接着生成曲面网格,且通常情形下,后续的体网格生成以曲面网格生成结果为输入,不再访问几何模型数据。基于这一考虑,本文的主要研究内容设定为面向曲面的CAD模型处理方法。曲面模型处理算法研究有2条平行的研究路线,一类基于连续曲面;另一类基于离散曲面。商业CAD系统构建的模型通常基于连续曲面,它数学表达严格。几何精度高,但定义在其上的几何计算通常是非线性的,数值稳定性差;离散曲面的基本元素为三角面片,相关几何计算是线性的,快速有效,但几何精度低。此外,离散曲面表征只涉及面片相邻等低层拓扑,应用于需高层拓扑支持的操作时,需构造连续曲面模型中常用的B-rep。本论文提出一类混合曲面造型方法。并系统性地研究了几类基于混合曲面造型的模型修复、特征简化和网格生成算法。相比单纯的基于连续曲面或离散曲面的方法,本论文所研究方法可兼顾两类方法长处,在底层系统设计、具体算法实现、网格生成质量等方面展现出独特的优势。将混合CAD造型方法应用于数值模拟前处理过程的思想对其它相关领域的研究有启发作用。具体地,本文在以下3点上做出了创新:(1)为兼顾基于连续曲面和离散曲面的模型修复和特征简化方法的优点,提出并实现了混合曲面造型;继而为支持仅改变模型拓扑、不改变模型几何定义的虚操作算法,引入虚拓扑,扩展B.姊的适用能力;最后基于上述增强的CAD模型表征方法,从软件工程的角度设计了一套分层的CAD/CAE系统集成方案,以屏蔽底层CAD数据来源和算法实现的多样性对上层CAE算法的影响。(2)基于混合曲面造型方法实现了连续曲面的自动拓扑生成算法。以处理曲面边界存在曲线交缠和细缝等缺陷的“脏”几何。几何计算在离散曲面上完成;拓扑计算先在离散曲面上完成,继而利用离散曲面和连续曲面之间的基本映射关系拓展到曲面B.rep。新算法不需要修改连续曲面的几何表征,修复后的模型满足后续特征简化和曲面网格生成算法的要求。(3)从高质量曲面网格生成的需求出发,基于混合曲面表征,提出了一类针对复杂组合参数曲面模型的自动特征简化算法,4类曲面特征的自动识别和简化。特征简化涉及到的所有操作均为虚操作,不涉及复杂的几何计算,可逆,且不改变模型的几何定义。针对“虚面”缺乏统一的连续曲面参数表达,无法直接复用已有网格生成算法的难题,提出了一类基于混合曲面造型的虚面网格生成算法。新算法先获得虚面离散模型的参数化表达;继而扩展连续曲面网格生成算法到任意参数曲面,实现离散曲面的网格化;最后基于离散模型和连续模型的映射关系,将定义在虚面离散模型上的曲面网格反映射回连续曲面。

  • 2021-06-21
  • 阅读111
  • 下载0
  • 141页
  • pdf

数据管理系统评测基准_从传统数据库到新兴大数据

据时代的到来意味着新技术、新系统和新产品的出现.如何客观地比较和评价不同系统之间的优劣 自然成为一个热门研究课题,这种情形与三十多年前数据库系统蓬勃发展时期甚为相似.众所周知,在数据库系统 取得辉煌成就的发展道路上,基准评测研究一直扮演着重要角色,极大推进了数据库技术和系统的长足发展.数据 管理系统评测基准是指一套可用于评测、比较不同数据库系统性能的规范,以客观、全面反映具有类似功能的数据 库系统之间的性能差距,从而推动技术进步、引导行业健康发展.数据管理系统评测基准与应用息息相关:应用发 展产生新的数据管理需求,继而引发数据管理技术革新,再催生多个数据管理系统/平台,进而产生新的数据管理 系统评测基准.数据管理系统评测基准种类多样,不仅包括面向关系型数据的基准评测,还包括面向半结构化数 据、对象数据、流数据、空间数据等非关系型数据的评测基准.在当今新的数据系统发展中,面向大数据管理系统的 评测基准的研究热潮也如期而至.大数据评测基准研究与应用密切相关.总体而言,尽管已有的数据管理系统评测 基准未能充分体现大数据的特征,但是从方法学层面而言,三十多年来数据管理系统评测基准的发展经验是开展 大数据系统研发最值得借鉴和参考的,这也是该文的主要动机.该文系统地回顾了数据管理系统评测基准的发展 历程,分析了取得的成就,并展望了未来的发展方向.

  • 2021-06-21
  • 阅读95
  • 下载0
  • 17页
  • pdf

奥氮平安全警戒信号的大数据挖掘与分析

目的:基于大数据挖掘分析奥氮平上市后安全警戒信号,为临床合理用药提供参考。方法: 利用美国FDA公共数据开放项目(openFDA)调取FDA不良事件报告系统(FAERs)数据库自2004年1月以 来收集的奥氮平药物不良事件(ADE)报告,采用报告比值比法(ROR)检测信号,以其95%置信区间下限 (ROR 95%cI。…。….)>1提示有安全警戒信号,比较奥氮平和其他抗精神病药(包括喹硫平、氯氮平、利培 酮、帕利哌酮、阿立哌唑、齐拉西酮、氯丙嗪、奋乃静、氟哌啶醇)与警戒信号的比例失衡分析结果,以相对报 告比(RRR)最大提示其与该警戒信号最相关。结果:共提取得到的11 171 211份ADE报告中,以奥氮平为 怀疑药物的ADE报告27 705份,其中以精神疾病分类的ADE报告数与信号数最多,>1 000例的ADE信号 有药物毒性、药物无效、药物相互作用、体重增加、嗜睡、自杀死亡、过量和恶性综合征(NMs)。ROR法检测 数量排序前100位ADE信号中有83个安全警戒信号,其中16个在奥氮平最新药品说明书中未提及,以 NMS风险信号最高(ROR 95%CI。…h。m=58.227)。氯丙嗪(RRR=75.271)、氟哌啶醇(RRR=66.164)与 NMs风险相关性均高于奥氮平(RRR=52.375)。结论:利用openFDA平台对奥氮平的安全警戒信号进行 检测分析,可有效为其后续药物警戒工作提供参考。

  • 2021-06-21
  • 阅读100
  • 下载0
  • 7页
  • pdf

绿色数据中心不完备能耗大数据填补及分类算法研究

着云计算和大数据时代的到来,大规模数据中心在全球范围内得到r广泛的部署.但大规模数据中心 的高能耗仍然是当今亟待解决的问题.为解决这一问题,通常采用太阳能等可再生绿色新能源为数据中心供电.绿 色数据中心能够根据新能源的变化配合市电为数据中心提供高效、低能耗且稳定的电能供给,这是数据中心发展 的趋势.文中针对数据收集不完善和断电等因素会造成一定程度的数据缺失情况,提出了一种基于完备相容类的 不完备大数据填补算法,来填补数据中心的缺失数据;针对绿色数据中心能耗大数据的不稳定、间歇性和随时变化 等特点,提出了一种基于离散弱相关的决策森林并行分类算法,通过对数据中心能耗大数据并行分类,来指导供电 方式,以利于高效节能和延长电池寿命;此外进一步提出了一种增量更新决策森林的算法,来增量更新分类模型, 该算法能够保障分类模型不断适应数据变化,防止分类准确率随时间而下降,从而避免电池频繁充放电,以保证稳 定供电.整体来说,文中提出了一种数据中心能耗大数据管理模型,该模型针对大规模绿色数据中心的能源供给相 关问题,运用不完备能耗大数据的填补、能耗大数据的并行分类、分类模型更新这三方面的技术方法,动态调控太 阳能和市电供电端口,为数据中心提供高效、低能耗且稳定的电能供给.最后,采用绿色数据中心真实的能耗相关 大数据集进行实验,实验结果说明文中提出的能耗大数据管理模型,能够帮助绿色数据中心有效管理太阳能和其 他资源来配合市电提供稳定且充足的电能供应,从而为整个数据中心服务体系提供高效的能源服务.

  • 2021-06-21
  • 阅读65
  • 下载0
  • 18页
  • pdf