• 首页

  • 方案库

  • 工业品库

  • 招标项目库

  • 专家库

  • 人才库

会员中心
搜索
登录
注册
  • 方案名称

解决方案

数字化转型通用方案行业方案安全方案大数据人工智能物联网行业展望自动控制其他

产品|技术

白皮书产品介绍技术介绍技术创新模型算法

政策|规范

政策规范行动计划

电子书

电子书课件

报告|论文

报告模板论文
  • 全部
  • 人气排行
  • 下载排行
  • 页数排行
  • 最新排行

【IEEETII】基于双向LSTM和注意力机制的工业异常检测集成生成模型

摘 要 对于新兴的工业物联网(IIoT)来说,智能异常检测是构建智能产业的关键一步。特别是爆炸性的时间序列数据对现代工业的信息挖掘和处理提出了巨大的挑战。如何识别和检测多维工业时间序列异常是一个重要问题。然而,大多数现有的研究都未能处理大量未标记的数据,从而产生了不理想的结果。在本文中,我们提出了一种新的集成深度生成模型,该模型是由基于双向长短期记忆和注意力机制(AMBiGAN)的生成对抗性网络构建的。生成器和鉴别器的结构是具有注意力机制的双向长短期记忆,可以捕捉时间序列依赖性。重构损失和生成损失测试样本训练空间和随机潜在空间的输入。实验结果表明,我们提出的AMBi GAN的检测性能有可能提高人工智能时代工业多维时间序列异常对IIoT的检测精度。

  • 2024-05-26
  • 阅读262

【IEEETII】基于多步融合Transformer模型的泡沫浮选品位预测

准确及时的泡沫品位预测在浮选泡沫工业过程中起着重要作用。然而,不同采样时间的泡沫特征序列和泡沫等级序列之间的信息往往不匹配,使得预测结果滞后。本文设计了一种多步融合Transformer (MSFT)模型。首先,我们提取多个泡沫时间序列作为输入,在多个时间序列下关联特征信息和等级信息,然后,设计一个自注意结构在多个尺度上进行融合,提高了不同时间序列下的信息相关性,最后,信息矩阵通过全连通层得到最终的预测结果。与现有泡沫品位网络递归神经网络(RNN)、长短期记忆(LSTM)、门控递归单元、Transformer、c - dec (RNN)、特征重建-回归、Siamese时间序列和差分(LSTM)和FlotationNet模型相比,MSFT模型在所有指标中分别将基线降低了30.3%、30.3%、30%、66.9%、30%、45.8%、55.2%和52.5%

  • 2024-05-26
  • 阅读289

【IEEETII】基于注意力的区间辅助网络用于过程工业中具有缺失值的异构采样序列的数据建模

在复杂过程工业中,多元时间序列无处不在,其非线性和动力学给重要质量变量的软测量带来了两大挑战。因此,由于其强大的表示能力,门控递归单元(GRU)和长短期记忆(LSTM)网络等非线性动态模型已被用于数据序列建模。尽管这在许多工业工厂中很常见,但这些动态算法无法直接处理具有异构样本间隔和缺失值的数据序列。为此,本文提出了基于注意力的区间辅助网络(AIA-Net),用于对流程行业中具有缺失值的异质采样序列的时间信息进行自适应建模。它包括两种主要机制,分别命名为基于注意力的时间感知动态插补和区间辅助时间感知网络。减少率是通过基于注意力的时间感知动态插补引入的,以应用时间间隔的影响,并用于缺失数据的插补。间隔辅助时间感知网络在模型结构中包括时间间隔,并使用采样间隔门来校正时间序列中的时间相关性。将所提出的AIA-Net成功应用于实际加氢裂化过程,预测了轻质石脑油中C5和C6的含量。

  • 2024-05-26
  • 阅读273

【JPC】高炉炼铁过程软传感器的多时间尺度inception-time网络

时间序列预测在许多领域得到了广泛的应用,工业软传感器就是其中之一。大多数时间序列建模方法要求以相等的间隔对所有输入进行采样。然而,在工业中,过程变量通常在不同的时间尺度上以不同的间隔进行采样。为了解决这个问题,在本文中,我们设计了一个框架,使用深度学习和时间表示技术对具有多个采样频率的长时间工业数据进行建模。数据通过时间表示聚合到不同的时间尺度,网络使用瓶颈层和一维滤波器同时提取时间和空间维度上的信息。与其他方法相比,所提出的模型有了显著的改进,并已在工厂部署并每月更新。 关键词:时间序列预测,多时间尺

  • 2024-05-26
  • 阅读241

【ESWA】一种用于多元时间序列异常检测的空间嵌入策略

时间序列的异常检测一直是学术界和工业界的热门话题。然而,由于维数的增加,许多现有的多变量时间序列方法都面临着共同的挑战。在这项研究中,我们开发了一种用于多变量时间序列异常检测的空间嵌入策略(SES-AD)。作为一个混合模型,SES-AD没有直接从原始时间序列中搜索不一致,而是将原始序列投影到较低维的空间中,从而可以很容易地从相异性向量中捕捉到新空间中的显著突变点。最后,通过统计策略确定了潜在的异常情况。为了验证我们的方法的性能,SES-AD被应用于大量的多变量时间序列。实验结果表明,SES-AD比现有的五种方法更有效。总体而言,SES-AD模型适用于解决高维数据集的异常检测问题,并保证了计算的有效性和准确性。

  • 2024-05-26
  • 阅读341

【InformationSciences】PHILNet:一种利用深度学习进行时间序列预测的高效方法

时间序列是当今行业中最常见的数据类型之一。预测时间序列行为的未来有助于提前规划、节省时间和资源,并帮助避免不希望出现的情况。为了进行预测,由于时间序列的因果性质,使用了历史数据。在这一领域已经提出了几种深度学习算法,其中通过一系列非线性函数处理输入以产生输出。我们提出了一种新的策略,以提高深度学习模型在时间序列预测中的效率,同时达到类似的效果。这种方法将模型分为多个级别,从最简单的级别开始,一直到最困难的级别。较简单的级别处理输入的平滑版本,而最复杂的级别处理原始数据。这种策略试图模仿人类的学习过程,在这个过程中,基本任务首先完成,然后是更精确和复杂的任务。我们的方法取得了很有希望的结果,与在各种时间序列中发现的最佳模型相比,均方误差提高了35%,训练时间减少了2.6次。

  • 2024-05-26
  • 阅读221

【JPC】用于时间序列数据中故障检测的过程控制界限的自动搜索

手动定义的控制界限仍然是制造业质量控制的常见策略,因为与更先进的数据分析方法相比,它们易于在车间部署。尽管它们仍然很重要,但没有系统的方法来定义这些控制极限。然而,次优控制限制可能会导致未检测到的故障或对生产造成不必要的中断。这篇手稿提出了一种算法,将这个手动过程系统化为一个高效的搜索任务。我们将搜索任务概念化为一系列子问题,这些子问题基于过程专家在定义控制极限时采取的传统步骤。该算法可以集成到车间人员的专家工具中,以自动定义带注释的时间序列数据中的控制限制。我们通过将算法发现的控制极限与汽车行业真实世界过程数据中过程专家手动定义的控制极限进行比较,来证明其有效性。此外,我们还证明了我们的算法可以推广到传统的时间序列分类问题,并在选定的基准数据集上实现了最先进的性能。我们的工作是第一次将手动定义的故障检测控制限值自动化。

  • 2024-05-26
  • 阅读246

【IEEETII】水电行业水库入库流量预测:一种基于生成流的方法

水库入库流量预测在水电行业中起着至关重要的作用。现有的研究要么局限于点估计,要么在捕捉数据之间的高阶动态相关性方面效率低下。然而,有必要估计实际大坝运行中的数据不确定性。本文提出了一种新的入流预测方法,该方法利用生成流对复杂的多元水文时间序列进行建模。我们的流对流方法(F2F)利用基于归一化流的生成网络来增强确定性模型,以明确地捕捉多变量相关性并近似预测流入分布。此外,F2F可以量化预测的不确定性,以帮助解释模型行为和预测结果,同时促进实时水库运行的安全关键决策。我们在从大型水电站收集的真实世界数据集上进行了广泛的实验。实验结果表明,我们的方法始终优于现有方法,同时考虑了不确定的观测结果,并提供了易于处理的多步提前流入预测。

  • 2024-05-26
  • 阅读417
上一页 1 …… 387388389390391392393394395396397 …… 910 下一页 共 7274 条


立即登录

没有账户,需要注册

登录用户可享受以下权益
  • 免费下载方案
  • 服币提现
  • 发布方案得服币
  • 交易分成

精品推荐

国内重点工业物联网平台四类厂商分类及选型指南

国内重点工业物联网平台四类厂商分类及选型指南

  • 阅读93
  • 下载5

工业物联网平台的典型应用场景深度分析

工业物联网平台发展重点: 一是行业深耕化,从通用型平台向“一米宽、百米深”的行业垂直平台转型,聚焦能源、交通、化工等领域的特定需求,沉淀场景化解决方案与行业Know-how,而非追求“大而全”的覆盖能力。 二是智能融合化,工业大模型与平台深度结合,实现工业知识的智能化重构、应用开发的低代码化升级,以及生产运营的自感知、自决策、自优化闭环管控,AI成为提质增效的核心变量。 三是生态协同化,平台不再是单一技术载体,而是串联产业链上下游的协同中枢,通过跨系统数据融合、产学研用金深度合作,形成“数据-算力-应用”的生态闭环,赋能供应链协同与产业集群升级。 四是部署灵活化,采用“平台化产品+私有化部署”结合的模式,兼顾中小企业轻量化需求与大型集团定制化诉求,支持公有云、私有云、边缘端的混合部署,平衡成本与安全性。

  • 阅读160
  • 下载7

低空基础设施发展研究报告(2025)

当前,世界百年变局加速演进,新一轮科技革命和产业变革?深入发展,低空经济作为新质生产力的重要组成部分,正以前瞻?性、引领性姿态加速崛起,成为推动经济结构优化升级、塑造高?质量发展新动能的关键领域。

  • 阅读330
  • 下载1

华为数字化转型之道

首先从华为的视角总结了企业对于数字化转型的应有的共识,以及从战略角度阐述了华为为何推行数字化转型,然后给出了华为数字化转型的整体框架(方法论),以及企业数字化转型成熟度评估的方法,帮助读者在厘清华为开展数字化转型工作的整体脉络的同时,能快速对自身的数字化水平进行自检,

  • 阅读400
  • 下载4

最新上线

大规模太阳能光伏电站的本地环境影响与效益

太阳能光伏(PV)是全球最广泛部署的可再生能源技术之一,并将在未来几十年迎来快速发展。截至2024年底,光伏发电贡献了年度新增装机容量的77%和可再生能源总装机容量的42%。2015年至2024年,全球光伏总装机容量增长了八倍以上。这种快速扩张是由成本下降、技术创新和效率提升,以及支持政策和激励措施推动的。根据国际可再生能源机构(IRENA)的1.5C情景,光伏发电预计将在实现与<<巴黎协定>>气候目标相一致能源转型中发挥关健作用,到2050年将贡献所需可再生能源总量的50%和可再生能源发电量的37%。

  • 阅读3
  • 下载0

干部与人才发展数字化解决方案——打造战略驱动的高质量人才供应体系

干部是企业实现关键业务突破和规模扩张的核心躯干,高质量、可持续的人才供给是企业基业长青的必要条件。储备、选拔、发展是核心课题,提升企业人才内生性供给能力,是企业发展人才保障的长久之计。

  • 阅读3
  • 下载0

肺动脉高压临床试验教育者的演进与影响

在临床试验环境中,肺动脉高压(PAH)的专门领域需要定 制化护理。不应低估赞助商、主要研究人员(PI)、临床试 验协调员、研究支持人员、医疗人员和勇敢志愿参与临床试 验的肺动脉高压(PAH)患者之间多学科合作的重要性。

  • 阅读2
  • 下载0

高端制造业:技术升级、产业重构与发展路径研究

高端制造业正呈现规模持续扩张与结构深度优化并行的发展态势。截至2024年底,我国高端制造业上市公司总资产达27.24万亿元,占A股上市公司总资产的6.07%,较2023年末增长6.13%,较2020年末大幅增长68.79%[1]。行业主体数量稳步增加,规模以上高端制造企业数量年均复合增长率达7.3%,资产总额与营业收入双轮驱动特征显著。从区域分布看,制造业正加速由东部沿海向中西部梯度转移,跨区域产业链协作深化,为整体规模扩容提供了空间支撑[2]。近年来,行业增速呈现"高位趋稳、结构分化"的新节奏:2021一2023年复合增速约9.2%,但2024年同比增速回落至5.8%,反映出由规模扩张主导向质量效益主导的阶段性转换。

  • 阅读3
  • 下载0
  • 关于我们

    电话:029-8838-6725

  • 新闻资讯

    企业简介 新闻动态 品牌实力 代理合作 诚聘英才 联系我们

  • 中服云

  • 工业互联网风向标

  • 在线咨询

西安/北京/南京/重庆/合肥/厦门/甘肃 地址:陕西省西安市雁塔区鱼跃工业园慧康生物科技产业园7楼 电话: 029-8838-6725

版权所有 @ 中服云 陕ICP备11002812号
  • 扫码咨询

    或

    点击立即咨询
  • 客服咨询

  • 用手机扫二维码

    或

    复制当前地址

  • 问题反馈 中服大讲堂 客服电话

方案库赚钱指南